first one is true, there's no net force acting on it thats greater than another or making it unbalanced, if there was the object would be in some kind of motion
All scientist use meters, that way scientist can share information across country without needing to convert the data.
3. is air resistance
4. The large rock
Answer:
1. well the value may vary because of different reactions to the technology because its new to a lot of people but to younger ones its something normal and something we cant live without but with older ones its something that they have lived without for most of there life.
Explanation:
Answer:
1.a) 1 kJ
1.b) 4 kJ
ratio 1:4
1.c) 4 times as before
2.a) 3.33 m/s2
Explanation:
1.a) bicycle's velocity =Displacement/time
=100/20 m/s
=5 m/s
bicycler's KE =1/2 *mass*(velocity)^2
=1/2*80*5^2
=1000 J = 1 kJ
1.b) bicycle's new velocity =200/20 m/s
=10 m/s
bicycler's new KE =1/2*80*10^2
=4000 J = 4 kJ
Ratio= KE 1 :KE new
= 1 :4
1.c) when bicycler's speed was doubled it increased the KE by 4 times (2^2). because In KE we consider the square of the speed , so the factor we increase the speed , the KE will get increased with the square value of it
ex : speed is triple the prior value , then the KE is as 3^2 times as before. that is 9 times
2.a) car acceleration = (20-0)/6 m/s2
= 3.33 m/s2
Answer:
Acceleration is the rate of change of velocity. Usually, acceleration means the speed is changing, but not always. When an object moves in a circular path at a constant speed, it is still accelerating, because the direction of its velocity is changing. Comment on robshowsides's post “Speed is the magnitude of velocity.
Explanation:
hope it helped tee hee
Answer:
d. 37 °C
Explanation:
= mass of lump of metal = 250 g
= specific heat of lump of metal = 0.25 cal/g°C
= Initial temperature of lump of metal = 70 °C
= mass of water = 75 g
= specific heat of water = 1 cal/g°C
= Initial temperature of water = 20 °C
= mass of calorimeter = 500 g
= specific heat of calorimeter = 0.10 cal/g°C
= Initial temperature of calorimeter = 20 °C
= Final equilibrium temperature
Using conservation of heat
Heat lost by lump of metal = heat gained by water + heat gained by calorimeter
