Answer:
frequency is 195.467 Hz
Explanation:
given data
length L = 4.36 m
mass m = 222 g = 0.222 kg
tension T = 60 N
amplitude A = 6.43 mm = 6.43 ×
m
power P = 54 W
to find out
frequency f
solution
first we find here density of string that is
density ( μ )= m/L ................1
μ = 0.222 / 4.36
density μ is 0.050 kg/m
and speed of travelling wave
speed v = √(T/μ) ...............2
speed v = √(60/0.050)
speed v = 34.64 m/s
and we find wavelength by power that is
power = μ×A²×ω²×v / 2 ....................3
here ω is wavelength put value
54 = ( 0.050 ×(6.43 ×
)²×ω²× 34.64 ) / 2
0.050 ×(6.43 ×
)²×ω²× 34.64 = 108
ω² = 108 / 7.160 ×
ω = 1228.16 rad/s
so frequency will be
frequency = ω / 2π
frequency = 1228.16 / 2π
frequency is 195.467 Hz
Answer:
The answer you would be looking for is A.
Explanation:
Answer:
(you can use my exact words) The length and thickness would make it so that the electrons move differently than they would a shorter and thinner wire because with the wire being longer the electrons would have a longer trip and with the wire being thicker the electrons would be more spread out and move be able to move more freely
<u>Answer:</u>
"Where friction or rubbing results in the transfer of electrons between particles, objects can become negatively or positively charged."
<u>Explanation:</u>
The motion resistance of one moving object with respect to another is called as "Friction". It isn't a basic force, like gravity or electromagnetism. Alternatively, scientists believe it is the product of the electromagnetic attraction in two touching surfaces between charged particles.
The friction have formula:
Friction force (<em>f </em>) = coefficient of friction × normal force (N)
For an instances when one ride a bicycle, an example of rolling friction is the contact between the wheel and the way.