Answer:
V = 3.6 volts
Explanation:
From Ohm's Law, we know that:
V = IR
but,
R = ρL/A
Therefore,
V = IρL/A
where,
V = Potential Difference = ?
I = Current = 4 A
ρ = resistivity of copper = 1.68 x 10⁻⁸ Ω.m
L = Length = 70 m
A = Cross-sectional Area = πd²/4 = π(1.29 x 10⁻³ m)²/4 [16 gauge wire has a diameter of 1.29 mm]
A = 1.31 x 10⁻⁶ m²
V = (4 A)(1.68 x 10⁻⁸ Ω.m)(70 m)/(1.31 x 10⁻⁶ m²)
<u>V = 3.6 volts</u>
Terminal speed is the maximum speed that a falling object can reach and is based on aerodynamic resistance. In a vacuum, an object falling toward a planet as a result of gravity will continue to accelerate until it hits the ground.
However, if the object is falling through an atmosphere, such as on earth, then it will accelerate up to the point that the aerodynamic resistance cancels the downward force due to gravity, and it travels at a constant maximum speed, called the terminal velocity. At this point, resistance is equal to acceleration due to gravity. At terminal velocity, the skydiver's acceleration is zero.
Net force is an unbalanced force, so the object will change speed or direction.
Either the object may speed up or slow down.
Explanation:
hope this helps you dear friend.
Answer:
R=2.5 ohm
Explanation:
Given that :
Voltage difference = 9 V
Current ,I= 3.6 A
As we know that from Ohm's law
V= I R
V =Voltage difference
I=Current
R=Resistance of the wire
Now by putting the values in the above equation we get
9 = 3.6 R

R=2.5 ohm
Therefore the resistance of the wire will be 2.5 ohm.