I choose question 1, so molarity is the concentration of a soulution expressed as the number of moles of solute by the litress of soulution. to get molarity you divide the moles of soulute by the litress of solution. soo 1 calculate the number of moles of solute present. 2 Calculate the number of litress solution present. 3. divide the number of moles of solute by the number of litress of solution
soo 1 mol of NaOH has a mass of 40.00 g, so moles of NaOH= 26.7. 1 mole divided 40.00 = 0.375. litress of solution = 650 g. im not sure why its a g i usally do it Ls so i guess its the way your teacher wants you to do it so do you know how to do that. so molarity = moles of solute and litress solution. sorry this probably didnt help i just wanted to add something that might help. im still working on this stuff myself hope this helps.
Answer:
b. potassium.
Explanation:
Potassium-sparing diuretics and salt substitutes are diuretics that eliminate salt and water but save potassium. They act by inhibiting the conducting sodium channels in the collecting tubule, such as amiloride and triamterene, or by blocking aldosterone, such as spironolactone.
Concomitant use of potassium-sparing diuretics together with salt substitutes may result in dangerously high blood levels of serum potassium. For this reason, it is important to consult a physician before taking these substances at the same time to avoid potential problems with potassium accumulation.
it will sink
Explanation:
the solid iron will sink because it is dense than the liquid iron I will sink and it will melt
To solve this problem,
we can use the Henderson-Hasselbalch Equation which relates the pH to the measure
of acidity pKa. The equation is given as:<span>
<span>pH = pKa + log ([base]/[acid]) ---> 1</span></span>
Where,
[base] = concentration
of C2H3O2
in molarity or moles
<span>[acid] = concentration of HC2H3O2 in molarity or moles</span>
For the sake of easy calculation, let us assume that:
[base] = 1
[acid] = x
<span>
Therefore using equation 1,
4.24 = 4.74 + log (1 / x)
<span>log (1 / x) = - 0.5
1 / x = 0.6065 </span></span>
x =
1.65<span>
The required ratio of C2H3O2 /HC2H3O2 <span>
is 1:1.65 or 3:5. </span></span>
Answer:
• The actual number of moles of each element in the smallest unit of the compound. •In water (H 2 O), ammonia (NH 3), methane (CH 4), and ionic compounds, the empirical and molecular
Explanation: