Answer:
(2) Organelles must work together and their
activities must be coordinated
Explanation:
Organelles are usually located in cells. They are saddled with the role of performing specific functions in the cells for the overall functioning of life. In eukaryotic cells, the organelles are membrane bounded but in prokaryotic or primitive cells such is not the case.
Examples of cell organelles are ribosome, food vacuole, nucleus e.t.c. Just like organs in the body, organelles must work together in order to enhance life.
Explanation:
firstly find for the molar mass of kcl and molar mass of k
and then
molar mass of k = x
molar mass of kcl= 40
cross mutiply and then simplify you will get your answer
Answer:
The molarity of urea in this solution is 6.39 M.
Explanation:
Molarity (M) is <em>the number of moles of solute in 1 L of solution</em>; that is

To calculate the molality, we need to know the number of moles of urea and the volume of solution in liters. We assume 100 grams of solution.
Our first step is to calculate the moles of urea in 100 grams of the solution,
using the molar mass a conversion factor. The total moles of 100g of a 37.2 percent by mass solution is
60.06 g/mol ÷ 37.2 g = 0.619 mol
Now we need to calculate the volume of 100 grams of solution, and we use density as a conversion factor.
1.032 g/mL ÷ 100 g = 96.9 mL
This solution contains 0.619 moles of urea in 96.9 mL of solution. To express it in molarity, we need to calculate the moles present in 1000 mL (1 L) of the solution.
0.619 mol/96.9 mL × 1000 mL= 6.39 M
Therefore, the molarity of the solution is 6.39 M.
When we can get Pka for K2HPO4 =6.86 so we can determine the Ka :
when Pka = - ㏒ Ka
6.86 = -㏒ Ka
∴Ka = 1.38 x 10^-7
by using ICE table:
H2PO4- → H+ + HPO4
initial 0.4 m 0 0
change -X +X +X
Equ (0.4-X) X X
when Ka = [H+][HPO4] / [H2PO4-]
by substitution:
1.38 X 10^-7 = X^2 / (0.4-X) by solving for X
∴X = 2.3x 10^-4
∴[H+] = X = 2.3 x 10^-4
∴PH = -㏒[H+]
= -㏒ (2.3 x 10^-4)
∴PH = 3.6
Answer:
So a sodium atom has the electronic configuration 2,8,1 meaning it has 1 electron on its outer shell. It has a neutral charge since the number of electrons is equal to the number of protons.
A sodium ion is one that has lost the electron on its valence shell. The electronic configuration is 2,8 and it has a positive charge because it has more protons than electrons.