Refractive Index is a ratio of two similar physical quantity which is dimension less
refractive index = sin I / sin r
therefore it doesn't have a unit.
The value of R3 is A) 10 Ω
Solubility indicates the maximum amount of a substance that can be dissolved in a solvent at a given temperature. Such a solution is called saturated. Divide the mass of the compound by the mass of the solvent and then multiply by 100 g to calculate the solubility in g/100g .
Answer:
<em>B. 68.6m</em>
Explanation:
<u>Free Fall Motion
</u>
When a body is left to move in the air with no friction, the motion is ruled only by the force of gravity. The vertical distance a body travels in the air after a time t is
.
We know the egg takes 3.74 seconds to reach the ground. The height it was launched from is
The closest correct option is
B. 68.6m
Answer:
Explanation:
This is a recoil problem, which is just another application of the Law of Momentum Conservation. The equation for us is:
which, in words, is
The momentum of the astronaut plus the momentum of the piece of equipment before the equipment is thrown has to be equal to the momentum of all that same stuff after the equipment is thrown. Filling in:
Obviously, on the left side of the equation, nothing is moving so the whole left side equals 0. Doing the math on the right and paying specific attention to the sig fig's here (notice, I added a 0 after the 4 in the velocity value so our sig fig's are 2 instead of just 1. 1 is useless in most applications).
0 = 90.0v - 2.0 and
2.0 = 90.0v so
v = .022 m/s This is the rate at which he is moving TOWARDS the ship (negative was moving away from the ship, as indicated by the - in the problem). Now we can use the d = rt equation to find out how long this process will take him if he wants to reach his ship before he dies.
12 = .022t and
t = 550 seconds, which is the same thing as 9.2 minutes