Answer:
(a) 0.833 j
(b) 2.497 j
(c) 4.1625 j
(d) 4.995 watt
Explanation:
We have given force F = 5 N
Mass of the body m = 15 kg
So acceleration 
As the body starts from rest so initial velocity u = 0 m/sec
(a) From second equation of motion 
For t = 1 sec

We know that work done W =force × distance = 5×0.1666 =0.833 j
(b) For t = 2 sec

We know that work done W =force × distance = 5×0.666 =3.33 j
So work done in second second = 3.33-0.833 = 2.497 j
(c) For t = 3 sec

We know that work done W =force × distance = 5×1.4985 =7.4925 j
So work done in third second = 7.4925 - 2.497 -0.833 = 4.1625 j
(d) Velocity at the end of third second v = u+at
So v = 0+0.333×3 = 0.999 m /sec
We know that power P = force × velocity
So power = 5× 0.999 = 4.995 watt
Answer:
Mass of banana is
Kg
Explanation:
Step 1: Determine the equation of speed of an object moving in an harmonic motion
Speed of moving in an harmonic motion is given by

Here, v represents the speed of the object in harmonic motion, k is the springs constant, m is the mass of the object, A is the amplitude, and x is the position.
In this question ,
because only at this position maximum speed occurs
So the simplified equation becomes -

OR

Substituting the given values in above equation we get -
Assume spring constant is
N/m

Mass of banana is
Kg
Answer:
Jupiter's gravitational acceleration is 24.8 m/s^2
Explanation:
Recall that the weight under the influence of a gravitational acceleration G is defined as:
Weight = m * G
Then, in our case we have
372 N = 15 kg * G
G = 372/15 m/s^2
G = 24.8 m/s^2