Answer:
16294 rad/s
Explanation:
Given that
M(ns) = 2M(s), where
M(s) = 1.99*10^30 kg, so that
M(ns) = 3.98*10^30 kg
Again, R(ns) = 10 km
Using the law of gravitation, the force between the Neutron star and the sun is..
F = G.M(ns).M(s) / R²(ns), where
G = 6.67*10^-11, gravitational constant
Again, centripetal force of the neutron star is given as
F = M(ns).v² / R(ns)
Recall that v = wR(ns), so that
F = M(s).w².R(ns)
For a circular motion, it's been established that the centripetal force is equal to the gravitational force, hence
F = F
G.M(ns).M(s) / R²(ns) = M(s).w².R(ns)
Making W subject of formula, we have
w = √[{G.M(ns).M(s) / R²(ns)} / {M(s).R(ns)}]
w = √[{G.M(ns)} / {R³(ns)}]
w = √[(6.67*10^-11 * 3.98*10^30) / 10000³]
w = √[2.655*10^20 / 1*10^12]
w = √(2.655*10^8)
w = 16294 rad/s