1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sukhopar [10]
3 years ago
9

The Explorer VIII satellite, placed into orbit November 3, 1960, to investigate the ionosphere, had the following orbit paramete

rs: perigee, 459 km; apogee, 2 289 km (both distances above the Earth's surface); period, 112.7 min. Find the ratio vp/va of the speed at perigee to that at apogee

Physics
1 answer:
PIT_PIT [208]3 years ago
8 0

Answer:

\frac{v_p}{v_a}=1.268

Explanation:

1) Basic concepts

Apogee: is the maximum distance for an object orbiting the Earth. For this case the distance for the apogee would be the sum of radius for the earth and 2289 km.

Perigee: Minimum distance of an object orbiting the Earth. For this case the distance for the perigee would be the sum of radius for the earth and 459 km.

A good approximation for these terms are related to the figure atached.

Isolated system: That happens when the system is not subdued to an external torque, on this case the change of angular momentum would be 0.

2) Notation and data

r_{earth} radius for the Earth, looking for this value on a book we got r_{earth}=6.37x10^{3}km

r_p =459km +r_{earth}=459km +6.37x10^3 km=6.829x10^3 km, represent the radius for perigee

r_a =2289km +r_{earth}=2289km +6.37x10^3 km=8.659x10^3 km, represent the radius for perigee

T=112.7min, period

v_p velocity of the perigee

v_p velocity of the apogee

r=\frac{v_p}{v_a} is the variable of interest represented the ratio for the speed of the perigee to the speed of the apogee

3) Formulas to use

We don't have torque from the gravitational force since is a centered force. So the change of momentum is 0

\Delta L=0   (1)

L_a=L_p   (2)

From the definition of angular momentum we have L_i=mv_i r_i, replacing this into equation (2) we got:

mv_a r_a =mv_p r_p   (3)

We can cancel the mass on both sides

v_a r_a =v_p r_p   (4)

And solving \frac{v_p}{v_a} we got:

\frac{v_p}{v_a}=\frac{r_a}{r_p}   (5)

And replacing the values obtained into equation (5) we got:

\frac{v_p}{v_a}=\frac{8.659x10^3 km}{6.829x10^3 km}=1.268  

And this would be the final answer \frac{v_p}{v_a}=1.268

You might be interested in
Match the following vocabulary words with their definitions:
Ronch [10]

Correct matching:


1 acceleration --> rate of change in velocity, which is the change in velocity divided by the change in time

2. speed --> the rate at which an object changes position when traveling in a certain direction

4. gravity --> force of attraction between all masses in the universe

5. Inertia --> an object´s resistance to a change in motion

3. friction --> force of resistance acting between objects in contact and tending to dampen their motion

6. velocity --> the rate at which an object changes position


6 0
3 years ago
Pot holder should have high insulation and low _____.
kipiarov [429]

Potholder should have high insulation and low conductivity, therefore the correct answer is the option B

<h3>What is insulation?</h3>

Insulation is a type of material used to create barriers to the transmission of the form of energy which either is in form of heat or electricity.

For outdoor trips in cold weather, several thin layers act as better insulating barriers for heat transfer.

The ability of an electric charge or heat to pass through a material is measured by its conductivity. A material is considered a conductor if it offers very little resistance to the flow of thermal or electric energy.

Thus, Potholders should be highly insulated and have low conductivity, therefore the correct answer is the option B

Learn more about insulation from here

brainly.com/question/14363642

#SPJ1

your question seems incomplete, the complete question is

To be effective, a pot holder should have low _____. viscosity conductivity malleability density

3 0
1 year ago
You are traveling in a car toward a hill at a speed of 36.4 mph. The car's horn emits sound waves of frequency 231 Hz, which mov
Marina CMI [18]

Answer:

<em>a. The frequency with which the waves strike the hill is 242.61 Hz</em>

<em>b. The frequency of the reflected sound wave is 254.23 Hz</em>

<em>c. The beat frequency produced by the direct and reflected sound is  </em>

<em>    11.62 Hz</em>

Explanation:

Part A

The car is the source of our sound, and the frequency of the sound wave it emits is given as 231 Hz. The speed of sound given can be used to determine the other frequencies, as expressed below;

f_{1} = f[\frac{v_{s} }{v_{s} -v} ] ..............................1

where f_{1} is the frequency of the wave as it strikes the hill;

f is the frequency of the produced by the horn of the car = 231 Hz;

v_{s} is the speed of sound = 340 m/s;

v is the speed of the car = 36.4 mph

Converting the speed of the car from mph to m/s we have ;

hint (1 mile = 1609 m, 1 hr = 3600 secs)

v = 36.4 mph *\frac{1609 m}{1 mile} *\frac{1 hr}{3600 secs}

v = 16.27 m/s

Substituting into equation 1 we have

f_{1} =  231 Hz (\frac{340 m/s}{340 m/s - 16.27 m/s})

f_{1}  = 242.61 Hz.

Therefore, the frequency which the wave strikes the hill is 242.61 Hz.

Part B

At this point, the hill is the stationary point while the driver is the observer moving towards the hill that is stationary. The frequency of the sound waves reflecting the driver can be obtained using equation 2;

f_{2} = f_{1} [\frac{v_{s}+v }{v_{s} } ]

where f_{2} is the frequency of the reflected sound;

f_{1}  is the frequency which the wave strikes the hill = 242.61 Hz;

v_{s} is the speed of sound = 340 m/s;

v is the speed of the car = 16.27 m/s.

Substituting our values into equation 1 we have;

f_{2} = 242.61 Hz [\frac{340 m/s+16.27 m/s }{340 m/s } ]

f_{2}  = 254.23 Hz.

Therefore, the frequency of the reflected sound is 254.23 Hz.

Part C

The beat frequency is the change in frequency between the frequency of the direct sound  and the reflected sound. This can be obtained as follows;

Δf = f_{2} -  f_{1}  

The parameters as specified in Part A and B;

Δf = 254.23 Hz - 242.61 Hz

Δf  = 11.62 Hz

Therefore the beat frequency produced by the direct and reflected sound is 11.62 Hz

3 0
3 years ago
The maximum force that a grocery bag can withstand without ripping is 250 n. Suppose that the bag is filled with 20 kg of grocer
zhannawk [14.2K]

Answer:

Groceries stay in the bag.

Explanation:

Given:

Maximum force = 250 N

Bag filled with = 20 kg

Lifted acceleration = 5.0\ m/s^2

Solution:

We need to calculate the exerted force on the grocery bag by using Newton's second law.

F = ma

Where:

F = Exerted force on the object.

m = Mass of the object in kg

a = Acceleration of the object in m/s^2

Now, we substitute m = 20 kg and a = 5.0\ m/s^2 in Newton's second law,

F = 20\times 5.0

F = 100\ m/s^2

Since, the exerted force on the bag is less than 250 N, the groceries will stay in the bag.

3 0
3 years ago
At the same moment, one rock is dropped and one is theown downwand with an iniial velocily of 29 us frm op of a building that is
Helen [10]

Answer:

The thrown rock will strike the ground 2.42s earlier than the dropped rock.

Explanation:

<u>Known Data</u>

  • y_{i}=300m
  • y_{f}=0m
  • v_{iD}=0m/s
  • v_{iT}=-29m/s, it is negative as is directed downward

<u>Time of the dropped Rock</u>

We can use y_{f}=y_{i}+v_{iy}t-\frac{gt^{2}}{2}, to find the total time of fall, so 0=300m-\frac{(9.8m/s^{2})t_{D}^{2}}{2}, then clearing for t_{D}.

t_{D}=\sqrt[2]{\frac{300m}{4.9m/s^{2}}} =\sqrt[2]{61.22s^{2}} =7.82s

<u>Time of the Thrown Rock</u>

We can use y_{f}=y_{i}+v_{iy}t-\frac{gt^{2}}{2}, to find the total time of fall, so 0=300-29t_{T}-\frac{(9.8)t_{T}^{2}}{2}, then, 0=-4.9t_{T}^{2}-29t_{T}+300, as it is a second-grade polynomial, we find that its positive root is t_{T}=5.4s

Finally, we can find how much earlier does the thrown rock strike the ground, so t_{E}=t_{D}-t_{T}=7.82s-5.4s=2.42s

6 0
3 years ago
Other questions:
  • A particle is being accelerated through space by a 10 N force. Suddenly the particle encounters a second of 10 N force in the op
    6·1 answer
  • How does the state of matter affect the speed of a sound wave traveling through it?
    13·1 answer
  • What is the relationship of an object's acceleration, its mass and the force applied to it?
    13·1 answer
  • Another name for a period is a family?
    14·1 answer
  • If more waves start passing a certain point every second,
    9·1 answer
  • The ballistic pendulum is a device used to measure the speed of a projectile such as a bullet. The projectile of mass m is fired
    14·1 answer
  • What does critical mean?
    15·2 answers
  • A fuel pump sends gasoline from a car's fuel tank to the engine at a rate of 6.55x10-2 kg/s. The density of the gasoline is 740
    11·1 answer
  • To identify whether the forces are balanced or not, you need to whet
    7·1 answer
  • Sugar is made of carbon, hydrogen, and oxygen atoms.Sugar is
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!