Answer:
Glycogen in an important storage polysaccharide found in animal tissues.
Explanation:
Full question:
Glycogen ________
A) forms the regulatory molecules known as enzymes
B) serves as a structural component of human cells
C) helps to protect vital organs from damage
D) is an important storage polysaccharide found in animal tissues
E) contains the genetic information found in cells
Glycogen is a complex polysaccharide of glucose founded in humans, animals, fungi and even bacteria. In humans, the glycogen is made and stored in liver cells. In the center on glycogen molecule, there is a single protein called Glycogenin. It is a center of a big flower made of glucose molecules (please refer to the scheme attached - Glycogenin is red and the blue lines are glucose chains). Glycogen is also stored in skeletal muscle, red and white blood cells, in glial brain cells and kidneys but in a smaller amounts. It can be found in the placenta in pregnant women where it serves as a nutrient storage for embryo. In an adult, the liver weighs 1,5 kg and glycogen weighs about 120g in such a liver. After a meal, the level of sugar is rising and the insulin is being secreted. Insulin is a tool by which sugar is being delivered to the cells, like a food delivery. During this period, glycogen is being synthesized in the liver out of glucose residues. When the meal is digested, the sugar level is back to normal. When more energy is needed, glycogen from the liver is broken down by glycogen phosphorylase and the new sugar is released into the bloodstream.

Answer:
B
Explanation:
found it from a person wjwjdjjanqnqq
Answer:
Magnets can be used in space. ... One class of magnets, called electromagnets, does need electricity to work.
Explanation:
Answer:
Option C. Triple the number of moles
Explanation:
From the ideal gas equation:
PV = nRT
Where:
P is the pressure
V is the volume
n is the number of mole
R is the gas constant
T is the absolute temperature.
Making V the subject of the above equation, we have:
PV = nRT
Divide both side by P
V = nRT / P
Thus, we can say that the volume (V) is directly proportional to both the number of mole (n) and absolute temperature (T) and inversely proportional to the pressure (P). This implies that and increase in either the number of mole, the absolute temperature and a decrease in the presence will cause the volume to increase.
Thus, the correct option is option C triple the number of moles. This can further be seen as illustrated below:
Initial volume (V1) = 12 L
Initial mole (n1) = 0.5 mole
Final mole (n2) = triple the initial mole = 3 × 0.5 = 1.5 mole
Final volume (V2) =?
From:
V = nRT / P, keeping T and P constant, we have:
V1/n1 = V2/n2
12/0.5 = V2/1.5
24 = V2/1.5
Cross multiply
V2 = 24 × 1.5
V2 = 36 L.
Thus Option C gives the correct answer to the question.
Umm I’ll figure it out rn! Will come back in 1 min