1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Veronika [31]
2 years ago
11

There is given an ideal capacitor with two plates at a distance of 3 mm. The capacitor is connected to a voltage source with 12

V until it is loaded completely. Then the capacitor is disconnected from the voltage source. After this the two plates of the capacitor are driven apart until their distance is 5 mm. Now a positive test charge of 1 nC is brought from the positively charged plate to the negatively charges plate. How large is the kinetic energy of the test charge? The test charge of 1 nC can be regarded to be so small that it does not influence the electric field between the two plates of the capacitor.
Physics
1 answer:
Licemer1 [7]2 years ago
3 0

The kinematic energy of the positive charge is 2 10⁻⁸ J

This electrostatics exercise must be done in parts, the first part: let's start by finding the charge of the capacitor, the capacitance is defined by

        C = \frac{Q}{\Delta V}

        C = ε₀ \frac{A}{d}

we solve for the charge (Q)

        \frac{Q}{\Delta V} = \epsilon_o \frac{A}{d}

indicates that for the initial point d₁ = 3 mm = 0.003 m and the voltage is DV₁ = 12

         Q = \epsilon_o \  \frac{A \ \Delta V_1 }{d_1}

Now the voltage source is disconnected so the charge remains constant across the ideal capacitor.

For the second part, the condenser is separated at d₂ = 5mm = 0.005 m

         Q = \epsilon_o \  \frac{A \ \Delta V_2 }{d_2}

we match the expressions of the charge and look for the voltage

          \frac{\Delta V_1}{d_1} = \frac{\Delta V_2}{d_2}

          ΔV₂ = \frac{d_2}{d_1 } \ \Delta V_1

The third part we use the concepts of conservation of energy

starting point. With the test load (q = 1 nC = 1 10⁻⁹ C) next to the left plate

          Em₀ = U = q DV₂

          Em₀ = q  \frac{d_2}{d_1 } \ \Delta V_1

           

final point. Proof load on the right plate

         Em_f = K

energy is conserved

         Em₀ = em_f

         q  \frac{d_2}{d_1 } \ \Delta V_1 = K

   

we calculate

         K = 1 10⁻⁹  12  \frac{0.005}{0.003}  

         K = 20 10⁻⁹ J

In this exercise, as the conditions at two different points of separation give, the area of ​​the condenser is not necessary and with conservation of energy we find the final kinetic energy of 2 10⁻⁸ J

You might be interested in
How long does it take an automobile traveling 66.7 km/h to become even with a car that is traveling in another lane at 52.7 km/h
tresset_1 [31]

Answer:

The  time taken is  t =  32.5 \  s

Explanation:

From the question we are told that

   The  speed  of  first car is  v_1  =  66.7 \ km/h  =  18.3 \  m/s

    The  speed  of  second car is v_2  =  52.7 \ km/h  =  14.64 \  m/s

   The  initial distance of separation is  d =  119 \ m

The distance covered by first car is mathematically represented as

     d_t =  d_i  +  d_f

Here  d_i is the initial distance which is  0 m/s

  and  d_f  is the final distance covered which is  evaluated as d_f  =  v_1 * t

So

     d_t =  0 \  m/s  +  (v_1 * t )

     d_t =  0 \  m/s  +  (18.3 * t )

The distance covered by second  car is mathematically represented as

     d_t =  d_i  +  d_f

Here  d_i is the initial distance which is  119 m

  and  d_f  is the final distance covered which is  evaluated as d_f  =  v_2* t

       d_t =  119  + 14.64 *  t

Given that the two car are now in the same position we have that

    119  + 14.64 *  t  =   0   +  (18.3 * t )

   t =  32.5 \  s

6 0
3 years ago
Learning Task 2: Write the words that can be associated with the ''Music During Classical Era''. You may ask help from the membe
Natasha_Volkova [10]

Answer:

classical

concert

exposition

orchesta

devolopment

recapitulation

sympathy

sonata

sinfonia

soloist

Explanation:

5 0
3 years ago
17 copper wires of length l and diameter d are connected in parallel to form a single composite conductor of resistance R. What
Lubov Fominskaja [6]

Answer:

\frac{D}{d} = 4.12

Explanation:

As we know that resistance of one copper wire is given as

r = \rho \frac{L}{a}

here we know that

a = \pi (\frac{d}{2})^2

now we have

r = \rho \frac{L}{\pi (\frac{d^2}{4})}

r = \rho \frac{4L}{\pi d^2}

now we know that such 17 resistors are connected in parallel so we have

R = \frac{r}{17}

R = \rho \frac{4L}{17 \pi d^2}

Now if a single copper wire has same resistance then its diameter is D and it is given as

R = \rho \frac{4L}{\pi D^2}

now from above two equations we have

\rho \frac{4L}{\pi D^2} = \rho \frac{4L}{17 \pi d^2}

D^2 = 17 d^2

now we have

\frac{D}{d} = 4.12

3 0
3 years ago
Compare green and orange light from the visible spectrum. You are currently in a labeling module. Turn off browse mode or quick
77julia77 [94]

Green: nm 495–570. Yellow: nm 570–590. 590–620 nm for orange. Red: 620-750 nm (400–484 THz frequency)

Solids' molecules are strongly attracted to one another. As a result, the molecules are barely moving and tightly packed. Because of this, shape and volume are fixed.

The forces of attraction and repulsion in liquids are comparable. Compared to the solid state, they move a little bit more. They then assume the shape of the container while still having a fixed capacity.

The attraction forces between the molecules in gases are quite weak. They move quite freely and grow in an effort to fill as much space as they can. Consequently, their volume and shape vary (adopt the shape of the container).

You can learn more about states of the matter here:

brainly.com/question/18538345

#SPJ4

6 0
2 years ago
Which type of surface would most likely be the best reflector of electromagnetic energy?
Len [333]
<span>light colored and smooth surface would most likely be the best reflector of electromagnetic energy.Light, shiny surfaces are the best reflectors of radiation and they will allow the waves to reflect and bounce off rather than absorb. we can consider mirror as the example ,it will only reflect the light energy falling on them and it will not absorb. The darker coloured and rough surfaced substances will definitely absorb some amount of light falling on it. so light coloured smooth or shiny surfaced material would be the best reflector for electromagnetic energy.</span>
5 0
3 years ago
Other questions:
  • A 3.92 cm tall object is placed in 31.3 cm in front of a convex mirror. The focal
    12·1 answer
  • PLEASE help me with these questions as soon as possible i need to turn it in!!!!
    8·1 answer
  • A car engine has___ power than a horse because a car engine does the same amount of work in___ time. Yasmin and Raj each had 10
    9·2 answers
  • Name the effect of current in electroplating
    5·1 answer
  • Discuss velocity by providing at least one example and explain why velocity is either a scalar or vector quantity.
    11·2 answers
  • What happens when a muscle contracts
    13·1 answer
  • The velocity of a particle is given by v=20t² - 100t + 50, where v is in meters per second and t is in seconds. Evaluate the vel
    13·2 answers
  • I am pushing on a box with 15 N of force, and my younger cousin is pushing the box (in the same direction as me) with 10 N of fo
    13·1 answer
  • A tennis ball moves 16 meters northward, then 22 meters southward, then 12 meters northward, and finally 32 meters southward.
    13·1 answer
  • A bicyclist steadily speeds up from rest to 6.00m/s in 7.30s.
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!