Explanation:
The given data is as follows.
Volume of lake =
= 
Concentration of lake = 5.6 mg/l
Total amount of pollutant present in lake = 
=
mg
=
kg
Flow rate of river is 50 
Volume of water in 1 day = 
=
liter
Concentration of river is calculated as 5.6 mg/l. Total amount of pollutants present in the lake are
or 
Flow rate of sewage = 
Volume of sewage water in 1 day =
liter
Concentration of sewage = 300 mg/L
Total amount of pollutants =
or 
Therefore, total concentration of lake after 1 day = 
= 6.8078 mg/l
= 0.2 per day
= 6.8078
Hence,
= 
=
= 1.234 mg/l
Hence, the remaining concentration = (6.8078 - 1.234) mg/l
= 5.6 mg/l
Thus, we can conclude that concentration leaving the lake one day after the pollutant is added is 5.6 mg/l.
Answer: the line Spectra of hydrogen lies between the ultra-violet, visible light and infra-red of the electro magnetic spectrum
Explanation:
Electromagnetic radiation spans an wide range of wavelengths and frequencies. This range is called the electromagnetic spectrum. The electromagnetic spectrum is generally divided into seven regions, in order of decreasing wavelength and increasing energy and frequency. The 7 regions includes; radio waves, microwaves, infrared (IR), visible light, ultraviolet (UV), X-rays and gamma rays.
lower-energy radiation, such as radio waves, is expressed as frequency while microwaves, infrared, visible and UV light are usually expressed as wavelength and finally, higher-energy radiation such as X-rays and gamma rays, is expressed in terms of energy per photon.
Therefore, hydrogen lies between the ultra-violet, visible light and infra-red region of the electro magnetic spectrum.
Answer: 1
1.Cl K Ar is in order
2.Fe Co Ni isn't in order
3.Te I Xe isn't in order
4.Ne F Na isn't in order
Answer:
Doping with galium or indium will yield a p-type semiconductor while doping with arsenic, antimony or phosphorus will yield an n-type semiconductor.
Explanation:
Doping refers to improving the conductivity of a semiconductor by addition of impurities. A trivalent impurity leads to p-type semiconductor while a pentavalent impurity leads to an n-type semiconductor.