The rubber protects him from being electrocuted by the flow of current going through the plug.
Hope this helped!!
Answer:
A) 60%
B) p2 = 1237.2 kPa
v2 = 0.348 m^3
C) w1-2 = w3-4 = 1615.5 kJ
Q2-3 = 60 kJ
Explanation:
A) calculate thermal efficiency
Л = 1 -
where Tl = 300 k
Th = 750 k
hence thermal efficiency ( Л ) = [1 - ( 300 / 750 )] * 100 = 60%
B) calculate the pressure and volume at the beginning of the isothermal expansion
calculate pressure ( P2 ) :
= P3v3 = mRT3 ----- (1)
v3 = 0.4m , mR = 2* 0.287, T3 = 750
hence P3 = 1076.25
next equation to determine P2
Qex = p3v3 ln( p2/p3 )
60 = 1076.25 * 0.4 ln(p2/p3)
hence ; P2 = 1237.2 kpa
calculate volume ( V2 )
p2v2 = p3v3
v2 = p3v3 / p2
= (1076.25 * 0.4 ) / 1237.2
= 0.348 m^3
C) calculate the work and heat transfer for each four processes
work :
W1-2 = mCv( T2 - T1 )
= 2*0.718 ( 750 - 300 ) = 1615.5 kJ
W3-4 = 1615.5 kJ
heat transfer
Q2-3 = W2-3 = 60KJ
Q3-4 = 0
D ) sketch of the cycle on p-V coordinates
attached below
I'm not sure but I know u is 10^6
Answer: Remember speed is distance divided by time, so if he travels 1000 m in 7.045 s, his speed is
(1000 m)/(7.045 s) = 141.9 m/s.
Note there are 1609 metres in a mile, or 1 mi = 1609 m, so m = 1/1609 mi, or
141.9/1609 mi/s = 0.08822 mi/s. Now, note that 1 h = 3600 s, so the speed is
0.08822*3600 mi/h = 317.6 mi/h.
Answer: Work W = 0
Explanation: Work W = F·s. Because rock does not move, s = 0 and
work done is zero.