Answer:
Carla
Explination: As Daniel's ball is dropped from the car moving at 40 mph in a horizontal direction, at the time the ball is dropped it is also moving at 40 mph in a horizontal direction due to inertia, a property of mass causing resistance to change, Daniel's ball will continue to move in a horizontal direction even after being dropped along with falling due to gravity. Daniel's ball will then fall in a projectile motion curve of sorts which will cause an overall velocity to not be straight down causing it not to fall to the ground as quickly as Carla's ball.
Sorry for the long explanation
Answer:
Im pretty sure 1 is gravity, 2 is force
Explanation:
Answer:
v = 12.4 [m/s]
Explanation:
With the speed and Area information, we can determine the volumetric flow.

where:
r = radius = 0.0120 [m]
v = 2.88 [m/s]
![A=\pi *(0.0120)^{2} \\A=4.523*10^{-4} [m]\\](https://tex.z-dn.net/?f=A%3D%5Cpi%20%2A%280.0120%29%5E%7B2%7D%20%5C%5CA%3D4.523%2A10%5E%7B-4%7D%20%5Bm%5D%5C%5C)
Therefore the flow is:
![V=2.88*4.523*10^{-4} \\V=1.302*10^{-3} [m^{3}/s ]](https://tex.z-dn.net/?f=V%3D2.88%2A4.523%2A10%5E%7B-4%7D%20%5C%5CV%3D1.302%2A10%5E%7B-3%7D%20%5Bm%5E%7B3%7D%2Fs%20%5D)
Despite the fact that you cover the inlet with the finger, the volumetric flow rate is the same.
![v=V/A\\v=1.302*10^{-3} /1.05*10^{-4} \\v=12.4[m/s]](https://tex.z-dn.net/?f=v%3DV%2FA%5C%5Cv%3D1.302%2A10%5E%7B-3%7D%20%2F1.05%2A10%5E%7B-4%7D%20%5C%5Cv%3D12.4%5Bm%2Fs%5D)
Answer:
a. A uniform disk of radius and mass .
Explanation:
The moment of inertia I of an object depends on a chosen axis and the mass of the object. Given the axis through the point, the inertia will be drawn from the uniform disc having a radius and the mass.
.