Answer:
The maximum voltage is 41.92 V.
Explanation:
Given that,
Peak voltage = 590 volts
Suppose in an L-R-C series circuit, the resistance is 400 ohms, the inductance is 0.380 Henry, and the capacitance is
.
We need to calculate the resonance frequency
Using formula of frequency

Put the value into the formula


We need to calculate the maximum current
Using formula of current




Impedance of the circuit is

At resonance frequency 

We need to calculate the maximum voltage
Using ohm's law



Hence, The maximum voltage is 41.92 V.
Answer:
√(6ax)
Explanation:
Hi!
The question states that during a time t the motorcyle underwent a displacement x at constant acceleration a starting from rest, mathematically we can express it as:
x=(1/2)at^2
Then the we need to find the time t' for which the displacement is 3x
3x=(1/2)a(t')^2
Solving for t':
t'=√(6x/a)
Now, the velocity of the motorcycle as a function of time is:
v(t)=a*t
Evaluating at t=t'
v(t')=a*√(6x/a)=√(6*x*a)
Which is the final velocity
Have a nice day!
Answer:
2.19 N/m
Explanation:
A damped harmonic oscillator is formed by a mass in the spring, and it does a harmonic simple movement. The period of it is the time that it does one cycle, and it can be calculated by:
T = 2π√(m/K)
Where T is the period, m is the mass (in kg), and K is the damping constant. So:
2.4 = 2π√(0.320/K)
√(0.320/K) = 2.4/2π
√(0.320/K) = 0.38197
(√(0.320/K))² = (0.38197)²
0.320/K = 0.1459
K = 2.19 N/m
"The table represents the speed of a car in a northern direction over several seconds. Column 1 would be on the x-axis, and Column 2 would be on the y-axis."
typical plot is speed or velocity on the y-axis n time on the x-axis so the ans is Column 1 should be titled “Time,” and Column 2 should be titled “Velocity.”