In a surface wave (like water) the water goes up and down, but the wave travels across (parallel to) the surface.
Frequency = speed / wavelength
(6 m/s) / (12 m) = 0.5 Hz.
That's not infrared light.
Infrared light waves move about 50 million times faster than that, and they're only about 0.00000007 as long as that.
-- The speed of light in air is very close to 3 x 10⁸ m/s.
Whatever the actual number is, it's equivalent to roughly
7 times around the Earth in 1 second. So for this kind of
problem, you can assume that we see things at the same time
that they happen; don't bother worrying about how long it takes
for the light to reach you.
-- For sound, it's a different story. Sound in air only travels at
about 340 m/s. It takes sound almost 5 seconds to go 1 mile.
-- Now, the lightning and thunder happen at the same time.
The light travels to you at the speed of light, so you see the
lightning pretty much when it happens. But the sound of the
thunder comes poking along at 340 m/s, and arrives AFTER
the sight of the lightning.
The length of time between the sight and the sound is about
99.9999% the result of the time it takes the sound to reach you.
If the thunder arrived at you 3 seconds after the light did, then
the sound traveled
(340 m/s) x (3 s) = 1,020 meters .
(about 0.63 of a mile)
(If you're worried about ignoring the time it takes
for the light to reach you ...
It takes light 0.0000034 second to cover the same 1,020 meters,
so including it in the calculation would not change the answer.)
Answer:
D
Explanation:
Michael Faraday is probably best known for his discovery of electromagnetic induction, his contributions to electrical engineering and electrochemistry or due to the fact that he was responsible for introducing the concept of field in physics to describe electromagnetic interaction.
Electromagnetic or magnetic induction is the production of an electromotive force across an electrical conductor in a changing magnetic field.
Electrical engineering is an engineering discipline concerned with the study, design and application of equipment, devices and systems which use electricity, electronics, and electromagnetism.
Electrochemistry is the branch of physical chemistry that studies the relationship between electricity, as a measurable and quantitative phenomenon, and identifiable chemical change, with either electricity considered an outcome of a particular chemical change or vice versa.