Answer:
A) 6.5 m/s²
Explanation:
Mass of the bucket, m = 3.0 kg
depth of the well, d = 10 m
tension on the rope, T = 9.8 N
The net downward force on the bucket is given as;
T = mg - ma
where;
a is downward acceleration of the bucket
9.8 = (3 x 9.8) - 3a
9.8 = 29.4 - 3a
3a = 29.4 - 9.8
3a = 19.6
a = 19.6 / 3
a = 6.53 m/s² downwards
Therefore, the acceleration of the bucket is 6.53 m/s² downwards
Answer:
m = 0.59 kg.
Explanation:
First, we need to find the relation between the frequency and mass on a spring.
The Hooke's law states that

And Newton's Second Law also states that

Combining two equations yields

The term that determines the proportionality between acceleration and position is defined as angular frequency, ω.

And given that ω = 2πf
the relation between frequency and mass becomes
.
Let's apply this to the variables in the question.

Answer:
Case A
Explanation:
given,
size of bacteria = 1 mm x 1 mm
velocity = 20 mm/s
size of the swimmer = 1.5 m x 1.5 m
velocity of swimmer = 3 m/s
Viscous force

for the bacteria


for the swimmer


from the above force calculation
In case B inertial force that represent mass is more than the inertial force in case of bacteria.
Viscous force is dominant in case of bacteria.
So, In Case A viscous force will be dominant.
Answer:
Energy lost due to friction is 22 J
Explanation:
Mass of the ball m = 4 kg
Initially velocity of ball v = 6 m/sec
So kinetic energy of the ball 

Now due to friction velocity decreases to 5 m/sec
Kinetic energy become

Therefore energy lost due to friction = 72 -50 = 22 J