Answer:
(a) BP = 11.99 KPa
(b) h = 2 m
Explanation:
(a)
Since, the fluid pressure and blood pressure balance each other. Therefore:
BP = ρgh
where,
BP = Blood Pressure
ρ = density of fluid = 1020 kg/m³
g = acceleration due to gravity = 9.8 m/s²
h = height of fluid = 1.2 m
Therefore,
BP = (1020 kg/m³)(9.8 m/s²)(1.2 m)
<u>BP = 11995.2 Pa = 11.99 KPa</u>
(b)
Again using the equation:
P = ρgh
with data:
P = Gauge Pressure = 20 KPa = 20000 Pa
ρ = density of fluid = 1020 kg/m³
g = acceleration due to gravity = 9.8 m/s²
h = height of fluid = ?
Therefore,
20000 Pa = (1020 kg/m³)(9.8 m/s²)h
<u>h = 2 m</u>
Answer:
B) An increase in pressure can lower the boiling point of a liquid and change the temperature at which it turns to a gas.
Explanation:
B) An increase in pressure can lower the boiling point of a liquid and change the temperature at which it turns to a gas.
Answer:
23.3808 kW
20.7088 kW
Explanation:
ρ = Density of oil = 800 kg/m³
P₁ = Initial Pressure = 0.6 bar
P₂ = Final Pressure = 1.4 bar
Q = Volumetric flow rate = 0.2 m³/s
A₁ = Area of inlet = 0.06 m²
A₂ = Area of outlet = 0.03 m²
Velocity through inlet = V₁ = Q/A₁ = 0.2/0.06 = 3.33 m/s
Velocity through outlet = V₂ = Q/A₂ = 0.2/0.03 = 6.67 m/s
Height between inlet and outlet = z₂ - z₁ = 3m
Temperature to remains constant and neglecting any heat transfer we use Bernoulli's equation

Work done by pump

∴ Power input to the pump 23.3808 kW
Now neglecting kinetic energy

Work done by pump

∴ Power input to the pump 20.7088 kW
Answer:
C
Explanation:
One of the disadvantages of solar cells is that electricity storage systems are not readily available. Excess energy generated by the solar panels are wasted except they are stored by solar batteries for later use. There are various systems for storing electricity from solar cells apart from solar batteries which is the common storage system. An example of another electricity storage system for solar cell is using the water electrolyzer to store solar energy which can be used to later generate hydroelectricity.
Advantages of a solar cell includes Renewable energy, Economy-friendly and environmental-friendly energy and good durability
Answer:
Explanation:
Inductance = 250 mH = 250 / 1000 = 0.25 H
capacitance = 4.40 µF = 4.4 × 10⁻⁶ F ( µ = 10⁻⁶)
ΔVmax = 240, f frequency = 50Hz and I max = 110 mA = 110 /1000 = 0.11A
a) inductive reactance = 2πfl = 2 × 3.142 × 50 × 0.25 H =78.55 ohms
b) capacitive reactance =
= 1 / ( 2 × 3.142× 50 × 4.4 × 10⁻⁶ ) = 723.34 ohms
c) impedance =
= 240 / 0.11 = 2181.82 ohms