Answer
given,
y(x,t)= 2.20 mm cos[( 7.02 rad/m )x+( 743 rad/s )t]
length of the rope = 1.33 m
mass of the rope = 3.31 g
comparing the given equation from the general wave equation
y(x,t)= A cos[k x+ω t]
A is amplitude
now on comparing
a) Amplitude = 2.20 mm
b) frequency =


f = 118.25 Hz
c) wavelength




d) speed


v = 105.84 m/s
e) direction of the motion will be in negative x-direction
f) tension


T = 27.87 N
g) Power transmitted by the wave


P = 0.438 W
The evidence that supports continental drift and plate tectonics includes different fossils, the same rocks and the shapes of continents that fit together.
<h3>What is continental drift?</h3>
Continental drift is a theory that states continents once were part of one big landmass known as Pangea.
Nowadays, the theory of continental drift proposed by Alfred Wegener has been replaced by plate tectonics.
In conclusion, the evidence that supports continental drift and plate tectonics includes fossils, the same rocks and the shapes of continents that fit together.
Learn more on the continental drift here:
brainly.com/question/394265
#SPJ1
1. Answer: components
A two dimensional vector can be divided into two parts called horizontal component and vertical component.
A three dimensional vector can be divided into three components: one along x-axis, one along y-axis and one along z-axis.
Hence, the vector parts that add up to the resultant are called components.
2. Answer: 5 miles.
The resultant distance along the straight line from the starting point to the end point would be the displacement.
The displacement would be equal to the magnitude of the hypotenuse formed in the right triangle.
Displacement, 
3. Answer: Scalar
A scalar quantity has only magnitude. For example, speed and distance are scalar quantities and can be normally added to find the total.
A vector quantity has both magnitude as well as direction. The components are summed according to vector addition rules. For example, velocity, acceleration, force etc.
Stopped at the end of the tracks by a spg-damper system, as shown in fig. 1