Force equals mass*distance
F = ma
Given m = 10 kg, F = 30 N
30 = 10a
30/10 = a
3 = a
The wagon's acceleration is 3 m/s^2
Answer:
no it can not effect the speed of sound not shure tho
-- The car starts from rest, and goes 8 m/s faster every second.
-- After 30 seconds, it's going (30 x 8) = 240 m/s.
-- Its average speed during that 30 sec is (1/2) (0 + 240) = 120 m/s
-- Distance covered in 30 sec at an average speed of 120 m/s
= <span> 3,600 meters .</span>
___________________________________
The formula that has all of this in it is the formula for
distance covered when accelerating from rest:
Distance = (1/2) · (acceleration) · (time)²
= (1/2) · (8 m/s²) · (30 sec)²
= (4 m/s²) · (900 sec²)
= 3600 meters.
_________________________________
When you translate these numbers into units for which
we have an intuitive feeling, you find that this problem is
quite bogus, but entertaining nonetheless.
When the light turns green, Andy mashes the pedal to the metal
and covers almost 2.25 miles in 30 seconds.
How does he do that ?
By accelerating at 8 m/s². That's about 0.82 G !
He does zero to 60 mph in 3.4 seconds, and at the end
of the 30 seconds, he's moving at 534 mph !
He doesn't need to worry about getting a speeding ticket.
Police cars and helicopters can't go that fast, and his local
police department doesn't have a jet fighter plane to chase
cars with.
Let the key is free falling, therefore from equation of motion
.
Take initial velocity, u=0, so
.

As velocity moves with constant velocity of 3.5 m/s, therefore we can use formula

From above substituting t,
.
Now substituting all the given values and g = 9.8 m/s^2, we get
.
Thus, the distance the boat was from the point of impact when the key was released is 10.60 m.
The final velocity is 
The distance traveled by the ball at time t is 
The maximum distance traveled by the object is 
The given parameters;
initial velocity of the ball, u = 20 m/s
acceleration due to gravity, g = 9.8 m/s²
The final velocity can be calculate as;

The distance traveled by the ball at time t;

The maximum distance traveled by the object is calculated as;

Learn more here: brainly.com/question/16878713