Answer:

Explanation:
From the question we are told that:
Height of window 
Height of window off the ground 
Time to fall and drop
Generally the Newton's equation motion is mathematically given by

Where



Generally the Newton's equation motion is mathematically given by

Where





Therefore the ball’s initial speed

False. I’m pretty sure the heart is the strongest muscle ( ._.)
Answer:
Yes, because the wrench is moving at the same speed as the sailboat.
The main difference is that a person on the ground would see the wrench moving diagonally, while a person on the boat would see the wrench falling straight down,
This difference in paths lead to the relativistic change in lengths.
The roller coaster is moving in a circular path, so the force that must be computed is the centripetal force. The centripetal force is the force acting on an object undergoing circular motion and is directed towards the center of the circular path. This is computed using:
F = mv²/r
F = (500 * 18²) / 12
F = 13,500 N
Now, at the bottom of the track, the track is also supporting the weight of the car and its passengers, which is:
W = mg
W = 500 * 9.81
W = 4,905 N
The total reactive force exerted by the track to counter the centripetal force and the weight of the car is:
F = 13,500 + 4,905
F = 18,405 Newtons
-- Accelerating at the rate of 8 m/s², Andy's speed
after 30 seconds is
(8 m/s²) x (30.0 s) = 240 m/s .
-- His average speed during that time is
(1/2) (0 + 240 m/s) = 120 m/s .
-- In 30 sec at an average speed of 120 m/s,
Andy will travel a distance of
(120 m/s) x (30 sec) = 3,600 m
= 3.6 km .
"But how ? ! ?", you ask.
How in the world can Andy leave a stop light and then
cover 3.6 km = 2.24 miles in the next 30 seconds ?
The answer is: His acceleration of 8 m/s², or about 0.82 G
is what does it for him.
At that rate of acceleration ...
-- Andy achieves "Zero to 60 mph" in 3.35 seconds,
and then he keeps accelerating.
-- He hits 100 mph in 5.59 seconds after jumping the light ...
and then he keeps accelerating.
-- He hits 200 mph in 11.2 seconds after jumping the light ...
and then he keeps accelerating.
-- After accelerating at 8 m/s² for 30 seconds, Andy and his
car are moving at 537 miles per hour !
We really don't know whether he keeps accelerating,
but we kind of doubt it.
A couple of observations in conclusion:
-- We can't actually calculate his displacement with the information given.
Displacement is the distance and direction between the starting- and
ending-points, and we're not told whether Andy maintains a straight line
during this tense period, or is all over the road, adding great distance
but not a lot of displacement.
-- It's also likely that sometime during this performance, he is pulled
over to the side by an alert cop in a traffic-control helicopter, and
never actually succeeds in accomplishing the given description.