To solve this we use the equation,
M1V1 = M2V2
where M1 is the concentration
of the stock solution, V1 is the volume of the stock solution, M2 is the
concentration of the new solution and V2 is its volume.
2 M x V1 = 0.1 M x .5 L
<span>V1 = 0.025 L or 25 mL of the
2 M KCl solution is needed</span>
According to the law of conservation of Mass:
In a chemical reaction mass can neither be created nor be destroyed
So, we can say that: Mass of A + Mass of B = Mass of C
In the given reaction,
One of the reactants weigh 5 grams and another one weighs x grams
The mass of the product of this reaction is 9 grams
<u>Mass of reactant B:</u>
Mass of A + Mass of B = Mass of C
5 + x = 9
x = 4 grams
I'm thinking the answer you are looking for is light energy. With the sunlight there is light energy and heat.
The amount of kinetic energu has depens upon an object's speed and its mass.
So its I and IV.
The correct answer is B.
Hope it helps!
#MissionExam001
Answer:
6.68 X 10^-11
Explanation:
From the second Ka, you can calculate pKa = -log (Ka2) = 6.187
The pH at the second equivalence point (8.181) will be the average of pKa2 and pKa3. So,
8.181 = (6.187 + pKa3) / 2
Solving gives pKa3 = 10.175, and Ka3 = 10^-pKa3 = 6.68 X 10^-11