We can calculate for temperature by assuming the equation
for ideal gas law:
P V = n R T
Where,
P = pressure = 1.80 atm
V = volume = 18.2 L
n = number of moles = 1.20 moles
R = gas constant = 0.08205746 L atm / mol K
Substituting to the given equation:
T = P V / n R
T = (1.8 atm * 18.2 L) / (1.2 moles * 0.08205746 L atm /
mol K)
T = 332.70 K
We can convert K unit to ˚C unit by subtracting 273.15
to Kelvin, therefore
T = 59.55 ˚<span>C</span>
Answer:
15.438g H2O
Explanation:
First you need to find the reaction equation:
2H2O+2Na=2NaOH + H2
Hydrogen is a diatomic molecule so it will have a subscript of 2 on the right hand side. From there we can balance the reaction.
Then we can use stoichiometry:
34.2g NaOH * (1 mol NaOH/39.908g NaOH) * (2 mol H2O/2 mol NaOH) * (18.015g H2O/1 mol H20) = 15.438g H2O
It is important that when you use stoichiometry that all your units cancel out until you only have the unit you want.
Its b because it explains it better than a waterfall does
I am pretty sure that <span>If I were asked to compare matter in solid, liquid, and gaseous states, the statement which would best defined a gas is </span>highest energy, highest molecular motion, and least dense packaging of molecules. I choose this one because it's not sensible to <span>heat CO2 (in case of safety) and in the last option the amount of energy is not satisfying.
Hope it helps!</span>