Q = mCΔT
Q is heat in joules, m is mass, C is specific heat, and delta T is change in temp
2099 J = (40.27g)(C)(148.5 - 24.8) = .421 J / gram K
X is usually representing time so years, days, etc
You can put a known amount sodium into some sort of time release mechanism such as a pill made from soluble material. Then you can place the sodium into a calorimeter with a known mass of water and record the temperature change the water undergoes during the reaction. Then you can use the equation q(water)=m(water)c(water)ΔT to find the amount of heat absorbed by the water. since the amount of heat absorbed by the water is the amount of heat released from the sodium, q(sodium)=-q(water). Than you can use the equation q(sodium)=m(sodium)c(sodium)ΔT and solve for c(sodium)
I hope this helps and feel free to ask about anything that was unclear in the comments.
Answer:
<em> ionic equation : </em>3Fe(2+)(aq) + 3SO4(2-)(aq)+ 6Na(+)(aq) + 2PO4 (3-) (aq) → Fe3(PO4)2(s)+ 6Na(+) + 3SO4(2-)(aq)
<em> net ionic equation: </em>3Fe(2+)(aq) + 2PO4 (3-)(aq) → Fe3(PO4)2(s)
Explanation:
The balanced equation is
3FeSO4(aq)+ 2Na3PO4(aq) → Fe3(PO4)2(s)+ 3Na2SO4(aq)
<em>Ionic equations: </em>Start with a balanced molecular equation. Break all soluble strong electrolytes (compounds with (aq) beside them) into their ions
. Indicate the correct formula and charge of each ion. Indicate the correct number of each ion
. Write (aq) after each ion
.Bring down all compounds with (s), (l), or (g) unchanged. The coefficents are given by the number of moles in the original equation
3Fe(2+)(aq) + 3SO4(2-)(aq)+ 6Na(+)(aq) + 2PO4 (3-) (aq) → Fe3(PO4)2(s)+ 6Na(+) + 3SO4(2-)(aq)
<em>Net ionic equations: </em>Write the balanced molecular equation. Write the balanced complete ionic equation. Cross out the spectator ions, it means the repeated ions that are present. Write the "leftovers" as the net ionic equation.
3Fe(2+)(aq) + 2PO4 (3-)(aq) → Fe3(PO4)2(s)