<span>There are 1000 cm3 in 1 liters.
Hence 1 liter of the liquid would weigh:
1000 cm3 x (1.17 g/cm3) = 1170 gm
and there are 1000 gm in 1 kg, so we want enough liters to have a mass of
3.75 kg x 1000 gm/kg = 3750 gm
Hence, # of liters = desired mass / # of gm per liter
= 3750 gm / 1170 gm/liter
= 3.2051282 liters</span>
Answer:
Va = (MbVb)/Ma
Explanation:
Divide both sides by Ma and voila!
This is true otherwise cancer patients would have a hole in them and so would the hulk ;)
Answer:
The correct answer is D. How gravity interacts with planets
Explanation:
Einstein's theory of relativity formulated in 1915 introduces the following concepts:
- Formula E = mc2 (relationship between energy, mass, speed of light)
- How nuclear energy is produced
-After seeing a solar eclipse, gravity is interpreted geometrically (which is an effect of distortion)
-Relative time
Answer:

Explanation:
We are asked to find the volume of a solution given the moles of solute and molarity.
Molarity is a measure of concentration in moles per liter. It is calculated using the following formula:

We know there are 0.14 moles of potassium chloride (KCl), which is the solute. The molarity of the solution is 1.8 molar or 1.8 moles of potassium chloride per liter.
- moles of solute = 0.14 mol KCl
- molarity= 1.8 mol KCl/ L
- liters of solution=x
Substitute these values/variables into the formula.

We are solving for x, so we must isolate the variable. First, cross multiply. Multiply the first numerator and second denominator, then the first denominator and second numerator.



Now x is being multiplied by 1.8 moles of potassium chloride per liter. The inverse operation of multiplication is division, so we divide both sides by 1.8 mol KCl/L.


The units of moles of potassium chloride cancel.


The original measurements of moles and molarity have 2 significant figures, so our answer must have the same. For the number we found, that is the thousandth place. The 7 in the ten-thousandth place tells us to round the 7 up to a 8.

There are approximately <u>0.078 liters of solution.</u>