Answer:
%Program prompts user to input vector
v = input('Enter the input vector: ');
%Program shows the value that user entered
fprintf('The input vector:\n ')
disp(v)
%Loop for checking all array elements
for i = 1 : length(v)
%check if the element is a positive number
if v(i) > 0
%double the element
v(i) = v(i) * 2;
%else the element is negative number.
else
%triple the element
v(i) = v(i) * 3;
end
end
%display the modified vector
fprintf('The modified vector:\n ')
disp(v)
Answer:
a. 2x/3
b. 8
Explanation:
fundamental period can be defined to mean that at after every period of 2π radians or 360° the value of graph is repeated. For such functions the fundamental period is the period after which they repeat themselves.
It van also be looked as The fundamental period of cos(θ) is 2π. That is (for example) cos(0) to cos(2π) represents one full period.
Please see attachment for the step by step solution.
Answer:
a) 1253 kJ
b) 714 kJ
c) 946 C
Explanation:
The thermal efficiency is given by this equation
η = L/Q1
Where
η: thermal efficiency
L: useful work
Q1: heat taken from the heat source
Rearranging:
Q1 = L/η
Replacing
Q1 = 539 / 0.43 = 1253 kJ
The first law of thermodynamics states that:
Q = L + ΔU
For a machine working in cycles ΔU is zero between homologous parts of the cycle.
Also we must remember that we count heat entering the system as positiv and heat leaving as negative.
We split the heat on the part that enters and the part that leaves.
Q1 + Q2 = L + 0
Q2 = L - Q1
Q2 = 539 - 1253 = -714 kJ
TO calculate a temperature for the heat sink we must consider this cycle as a Carnot cycle. Then we can use the thermal efficiency equation for the Carnot cycle, this one uses temperatures:
η = 1 - T2/T1
T2/T1 = 1 - η
T2 = (1 - η) * T1
The temperatures must be given in absolute scale (1453 C = 1180 K)
T2 = (1 - 0.43) * 1180 = 673 K
673 K = 946 C