Answer:
Given:
Fundamental frequency: 470Hz
T1:310k,T2:315k
Calculating velocity
Recall v=(331m/s)✓[T1/273k)
V=331✓(310/273)
V1=331*(1.0656)=352.72m/s
V2=331✓(315/273)=355.5m/s
Fundamental frequency=4L
F2=F1(V2/V1)
F2=470(355.5/352.72)=474.4Hz
Beat=[F2-F1]=474.4-470=4.4Hz
Explanation:
A transverse wave and a longitudinal wave.
Transverse:wave particles move at medium speed in perpendicular to the direction that the waves move
Longitudinal:wave particles move at medium speed in parallel to the direction that the wave moves
Hope this helps ^-^
Answer:
Explanation:
a ) Conservation of momentum is followed
m₁ v₁ = m₂ v₂
3m x 2 = m v
v = 6 m/s
Total kinetic energy
= 1/2 x .35 x 6 ² + 1/2 x 1.05 x 2 ²
= 8.4 J
This energy must be stored as elastic energy in the spring which was released as kinetic energy on burning the cord.
Yes , the conservation of momentum will be followed in the bursting apart process. Only internal forces have been involved in the process. Two equal and opposite internal forces are created by spring which creates motion and generates kinetic energy.
Answer:
film is at distance of 3.07 cm from lens
Explanation:
Given data
focal length = 3.06 cm
distance = 10.4 m = 1040 cm
to find out
How far must the lens
solution
we apply here lens formula that is
1/f = 1/p + 1/q
here f = 3.06 and p = 1040 so we find q
1/f = 1/p + 1/q
1/3.06 = 1/1040 + 1/q
1/ q = 0.3258
q = 3.0690 cm
so film is at distance of 3.07 cm from lens