Answer:
0.007 mol
Explanation:
We can solve this problem using the ideal gas law:
PV = nRT
where P is the total pressure, V is the volume, R the gas constant, T is the temperature and n is the number of moles we are seeking.
Keep in mind that when we collect a gas over water we have to correct for the vapor pressure of water at the temperature in the experiment.
Ptotal = PH₂O + PO₂ ⇒ PO₂ = Ptotal - PH₂O
Since R constant has unit of Latm/Kmol we have to convert to the proper unit the volume and temperature.
P H₂O = 23.8 mmHg x 1 atm/760 mmHg = 0.031 atm
V = 1750 mL x 1 L/ 1000 mL = 0.175 L
T = (25 + 273) K = 298 K
PO₂ = 1 atm - 0.031 atm = 0.969 atm
n = PV/RT = 0.969 atm x 0.1750 L / (0.08205 Latm/Kmol x 298 K)
n = 0.007 mol
Atomic mass W = 183.84 u.m.a
183.84 g ----------- 6.02x10²⁴ atoms
?? g ---------------- 2.1x10²⁴ atoms
2.1x10²⁴ x 183.84 / 6.02x10²⁴ =
3.860x10²⁶ / 6.02x10²⁴ = 641.30 g
hope this helps!
Answer:
the only one i really know is magna carta which is an article created so that the king's power could be limited or something
because it a essential for good heat transfer