The pH of pure water has been best described as neutral pH with equal hydronium and hydroxide ions. Thus, option A is correct.
pH has been described as the measurement of hydrogen ions in a solution. The pH has been measured on a scale of 1-14. pH 7 has been the neutral pH.
The higher hydronium ion concentration tends to move the pH from 7 towards 1. The higher hydroxide ion concentration tends to move the pH above 7.
The neutral pH has been neither acidic nor basic with the equal constituents of hydronium and hydroxide ion in the solution.
Thus, the pH of pure water has been 7. It has neutral pH with equal hydronium and hydroxide ions. Thus, option A is correct.
For more information about the pH of the solution, refer to the link:
brainly.com/question/4975103
The answer is 4. It can hold 4 sublevels as s.p,d,f and it holds 32 electrons
1°/ . 2 Al + 6 HCl → 2 AlCl3 + 3 H2
<span>k1 = n(Al) / 2 = 4,5 / 2 = 2,25 </span>
<span>k2 = n(HCl) / 6 = 11,5 / 6= 1,92 </span>
<span>k2 < k1 ==> HCl is the limiting reactant </span>
<span>6 mol of HCl ---> 2 mol of H2 </span>
<span>11,5 mol of HCl ---> 3,83 mol of H2 </span>
To answer this problem, we need to count the electrons in the given configuration. The complete configuration is 1s2 2s2 2p6 3s2 3p6. There are 2+2+6+2+6 equal to 18 electrons. We find next the element with an atomic number of 18. That element is noble gas argon.
Answer:
a) yes, it was an hydrate
b) the number of waters of hydration, x = 6
Explanation:
a) yes it was an hydrate because the mass decreased after the process of dehydration which means removal of water thus some water molecules were present in the sample.
b) NiCl2. xH2O
mass if dehydrated NiCl2 = 2.3921 grams
mass of water in the hydrated sample = mass of hydrated - mass of dehydrated = 4.3872 - 2.3921 = 1.9951 g which represent the mass of water that was present in the hydrated sample.
NiCl2.xH2O
mole of dehydrated NiCl2 = m/Mm = 2.3921/129.5994 = 0.01846 mole
mole of water = m/Mm = 1.9951/18.02 = 0.11072 mole
Divide both by the smallest number of mole (which is for NiCl2) to find the coefficient of each
for NiCl2 = 0.01846/0.01846 = 1
for H2O = 0.11072/0.01846 = 5.9976 = 6
thus the hydrated sample was NiCl2. 6H2O