Answer:
no
Explanation:
Radium is silvery, lustrous, soft, intensely radioactive. It readily oxidizes on exposure to air, turning from almost pure white to black. Radium is luminescent, corrodes in water to form radium hydroxide. Although is the heaviest member of the alkaline-earth group it is the most volatile.
Answer:
0.302L
Explanation:
<em>...97.1mL of 1.21m M aqueous magnesium fluoride solution</em>
<em />
In this problem the chemist is disolving a solution from 1.21mM = 1.21x10⁻³M, to 389μM = 389x10⁻⁶M. That means the solution must be diluted:
1.21x10⁻³M / 389x10⁻⁶M = 3.11 times
As the initial volume of the original concentration is 97.1mL, the final volume must be:
97.1mL * 3.11 = 302.0mL =
0.302L
Answer:density
Explanation:
it’s how’s how dens the ball is
Answer:
I think the answer is A!!!
Answer:
% = 76.75%
Explanation:
To solve this problem, we just need to use the expressions of half life and it's relation with the concentration or mass of a compound. That expression is the following:
A = A₀ e^(-kt) (1)
Where:
A and A₀: concentrations or mass of the compounds, (final and initial)
k: constant decay of the compound
t: given time
Now to get the value of k, we should use the following expression:
k = ln2 / t₁/₂ (2)
You should note that this expression is valid when the reaction is of order 1 or first order. In this kind of exercises, we can assume it's a first order because we are not using the isotope for a reaction.
Now, let's calculate k:
k = ln2 / 956.3
k = 7.25x10⁻⁴ d⁻¹
With this value, we just replace it in (1) to get the final mass of the isotope. The given time is 1 year or 365 days so:
A = 250 e^(-7.25x10⁻⁴ * 365)
A = 250 e^(-0.7675)
A = 191.87 g
However, the question is the percentage left after 1 year so:
% = (191.87 / 250) * 100
<h2>
% = 76.75%</h2><h2>
And this is the % of isotope after 1 year</h2>