I believe that the answer is B. 133 N
Answer:
<h2>33.53m/s</h2>
Explanation:
Given the maximum speed limit on interstate 10 as 75 miles per hour, to get the speed in meter per seconds, we need to convert the given speed to meter per seconds.
Using the conversion 1 mile = 1609.34m and 1 hour = 3600 seconds
75 miles perhour = 75miles/1 hour
75miles/1 hour (in m/s) = 75miles*1609.34m* 1 hour/1mile * 1 hour * 3600s *
= 75 *1609.34m* 1 /1 * 1 * 3600s
= 120,700.5m/3600s
= 33.53m/s
<em>Hence the maximum speed limit on interstate 10 in metre per seconds is 33.53m/s</em>
Answer:
Final volumen first process 
Final Pressure second process 
Explanation:
Using the Ideal Gases Law yoy have for pressure:

where:
P is the pressure, in Pa
n is the nuber of moles of gas
R is the universal gas constant: 8,314 J/mol K
T is the temperature in Kelvin
V is the volumen in cubic meters
Given that the amount of material is constant in the process:

In an isobaric process the pressure is constant so:



Replacing : 

Replacing on the ideal gases formula the pressure at this piont is:

For Temperature the ideal gases formula is:

For the second process you have that
So:




<h2>
Answer:</h2>
143μH
<h2>
Explanation:</h2>
The inductance (L) of a coil wire (e.g solenoid) is given by;
L = μ₀N²A / l --------------(i)
Where;
l = the length of the solenoid
A = cross-sectional area of the solenoid
N= number of turns of the solenoid
μ₀ = permeability of free space = 4π x 10⁻⁷ N/A²
<em>From the question;</em>
N = 183 turns
l = 2.09cm = 0.0209m
diameter, d = 9.49mm = 0.00949m
<em>But;</em>
A = π d² / 4 [Take π = 3.142 and substitute d = 0.00949m]
A = 3.142 x 0.00949² / 4
A = 7.1 x 10⁻⁵m²
<em>Substitute these values into equation (i) as follows;</em>
L = 4π x 10⁻⁷ x 183² x 7.1 x 10⁻⁵ / 0.0209 [Take π = 3.142]
L = 4(3.142) x 10⁻⁷ x 183² x 7.1 x 10⁻⁵ / 0.0209
L = 143 x 10⁻⁶ H
L = 143 μH
Therefore the inductance in microhenrys of the Tarik's solenoid is 143
Vocabulary should be, I think:
I. Hypothesis
II. Evidence, data
III. Experiment
What is your question exactly?