R is proportional to the length of the wire:
R ∝ length
R is also proportional to the inverse square of the diameter:
R ∝ 1/diameter²
The resistance of a wire 2700ft long with a diameter of 0.26in is 9850Ω. Now let's change the shape of the wire, adding and subtracting material as we go along, such that the wire is now 2800ft and has a diameter of 0.1in.
Calculate the scale factor due to the changed length:
k₁ = 2800/2700 = 1.037
Scale factor due to changed diameter:
k₂ = 1/(0.1/0.26)² = 6.76
Multiply the original resistance by these factors to get the new resistance:
R = R₀k₁k₂
R₀ = 9850Ω, k₁ = 1.037, k₂ = 6.76
R = 9850(1.037)(6.76)
R = 69049.682Ω
Round to the nearest hundredth:
R = 69049.68Ω
Because the polar regions receive low-angle insolation.
Insolation is the amount of solar radiation received by a given area. The Sun is always low on the horizon. The low Sun angle makes the beam of solar radiation to travel a longer distance from upper troposphere to reach earth's surface as compared to when it is directly overhead. In this case, the radiations are scattered and reflected more by the atmosphere and spread over a larger area. Thus, the intensity of solar radiation is very less at polar regions than near the equatorial region. This is the reason of very cold climates at polar regions.
"Acceleration" does NOT mean speeding up. It also doesn't mean
slowing down. Acceleration means ANY change in the speed
OR DIRECTION of motion.
The only kind of motion that's NOT accelerated is motion at a steady
speed AND in a straight line.
Even when your speed is steady, you're accelerating if your direction
is changing.
A few examples:
(no speeds are changing):
-- driving on a curved road, or turning a corner
-- going around a curve on a skateboard, a bike, or a Segway
-- running on a quarter-mile track
-- an Indy car cruising a practice lap around the track
-- water spinning, getting ready to go down the drain
-- any point on the blade of a fan
-- the little ball going around the inside of a Roulette wheel
-- the Moon in its orbit around the Earth
-- the Earth in its orbit around the sun
To begin with, we can use the formula that links frequency, wavelength and velocity.
Because you already have the wavelength and the frequency, you just need to solve for velocity. You can do this by multiplying each side of the equation by frequency.
Therefore, 400 x 2.5 = 1000m/s.
Hope this helps :)