<u>Answer:</u> The lewis dot structure is attached below.
<u>Explanation:</u>
A Lewis dot structure is defined as the representation of atoms having electrons around the atom where electrons are represented as dots.
A ketene is an organic compound having general formula R′R″C=C=O, where R and R' are two different/same monovalent chemical groups.
The given chemical compound having formula
is represented as
.
Total number of unshared electrons = 4 (left on oxygen atom only)
The lewis dot structure of
is given in the image below.
A reaction in which bonds are created is usually associated with the Release of energy.
What are the various types of bonds?
There are three sorts of bonds:
1. Electrovalent or electrovalent bond
2. chemical bond
3. dative bond
Electrovalent or electrovalent bond are formed when one or more electrons are transferred from one atom to another.
Covalent bonds are formed when the atoms during a molecule share an equal number of electrons.
A dative bond is one in which both electrons in a shared pair come from the same atom.
Now, atoms tend to stabilize once they form chemical bonds, releasing energy within the process. Energy is released because there's a higher level of stability associated with a low energy level.
Hence, a reaction in which bonds are created is usually associated with the release of energy.
To know more about chemical bonds go to the given link:
brainly.com/question/20584851
#SPJ4
The metals are to the left of the line (except for hydrogen, which is a nonmetal), the nonmetals are to the right of the line, and the elements immediately adjacent to the line are the metalloids.
hope it helps...!!!
They have to form a chemical bond in order to brake them down first
Answer:
50 g Sucrose
Explanation:
Step 1: Given data
- Concentration of the solution: 2.5%
Step 2: Calculate the mass of sucrose needed to prepare the solution
The concentration of the solution is 2.5%, that is, there are 2.5 g of sucrose (solute) every 100 g of solution. The mass of sucrose needed to prepare 2000 g of solution is:
2000 g Solution × 2.5 g Sucrose/100 g Solution = 50 g Sucrose