False. At equilibrium, the rate of forward reaction is equal to the rate of backward reaction. The net concentration of both products and reactants won't change, but the reactions still take place.
Answer:
The answer to your question is 2 molecules
Explanation:
Unbalanced chemical reaction
H₂(g) + N₂(g) ⇒ NH₃ (g)
Reactants Elements Products
2 H 3
2 N 1
Balanced chemical reaction
3H₂(g) + N₂(g) ⇒ 2NH₃ (g)
Reactants Elements Products
6 H 6
2 N 2
From the balanced chemical reaction we conclude that when 3 molecules of hydrogen react with one molecule of nitrogen, 2 molecules of ammonia will be formed.
First, lets balance the reaction equation:
4Fe + 3O₂ → 2Fe₂O₃
It is visible form the equation that 4 moles of Fe require 3 moles of O₂
Molar ratio Fe/O₂ = 4/3 = 1.33
Molar ratio O₂/Fe = 3/4 = 0.75
Now, we check the molar ratios present:
Fe/O₂ = 6.8/8.9 = 0.76
O₂/Fe = 1.31
Thus, Iron is the limiting reactant because its ratio is not being fulfilled while the ratio of O₂ is surpassed.
Answer: D. A buildup of mostly methane gas, which is pontentially explosive.
Explanation:
Firedamp refers to a gas mixture, largely methane, that appear in underground coal mines. It is explosive at concentrations between 5 and 10% in the air.
One sign of a chemical reaction is that gas is being created.