Answer:
a=g(sinθ-μkcosθ)
Explanation:
In an inclined plane the forces that interact with the object can be seen in the figure. The normal force, the weight w and the decomposition of the force vector of weight can be observed.
wx=m*g*sinθ
wy=m*g*cosθ
As the objects moves down an incline, acceleration in y axis is 0.
Then, by second Newton's Law:
Fy = m*ay
FN - m*g cos θ = 0,
FN=m*g cos θ
In x axis the forces that interacs are the x component of weight and friction force:
Fx = m*ax
mg sen u-FN*μk=m*a
Being friction force, Fr=FN*μk, we replace with its value in below formula:
m*g *sinθ-(m*g*cosθ*μk)=m*a
Then, isolating a:
a=(m*g sinθ-(m*g*cosθ*μk))/m
Solving, we have next equation:
a=g sinθ-(g*cosθ*μk)
Applying distributive property we have:
a=g*(sinθ-μk*cosθ)
We know the answer doesn't have to do with force because we have not identified a positive or negative axis.
Depending on what the system we are evaluating is, the sign of the work can change.
If work is done on the system, it is negative, but if work is done by the system, it is positive.
If the system we are evaluating is the leash, the work is being done by the leash, and therefore, the work is positive.
If the system we are evaluating is the dog, the work is being done on the dog, and therefore, the work is negative.
Answer:
Specific heat of brass is 0.40 J g⁻¹ °C⁻¹ .
Explanation:
Given :
Mass of brass, m₁ = 440 g
Temperature of brass, T₁ = 97° C
Mass of water, m₂ = 350 g
Temperature of water, T₂ = 23° C
Specific heat of water, C₂ = 4.18 J g⁻¹ °C⁻¹
Equilibrium temperature, T = 31° C
Let C₁ be the specific heat of brass.
Heat loss by brass = Heat gain by water
m₁ x C₁ x ( T₁ -T ) = m₂ x C₂ x ( T - T₁ )
Substitute the suitable values in above equation.
440 x C₁ x (97 - 31) = 350 x 4.18 x (31 - 23)
C₁ = 
C₁ = 0.40 J g⁻¹ °C⁻¹
Consider 20 deg.C. as room temperature.
From tables,
Silver has a resistivity of 1.6*10^-8 ohm-m at 20 deg.C, and it increases by 0.0038 ohm-m per deg.K increase.
Therefore if the temperature rise above 20 deg.C is T, then silver will have resistivity of
1.6*10^-8(1 + 0.0038T) ohm-m
At room temperature, the resistivity of tungsten (from tables) is 5.6*10^-8.
The resistivity of silver will be 4 times that of tungsten (at room temperature) when
1.6*10^-8(1 + 0.0038T) = 4*5.6*10^-8
1 + 0.0038T = 14
T = 13/.0038 = 3421 deg.K approx
Answer: 20 + 3421 = 3441 °C
The answer is 8 because multiplying 7 and 8 is 56