1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nuetrik [128]
3 years ago
13

Multiple Choice

Physics
1 answer:
Elena L [17]3 years ago
3 0
The Atlantic Ocean provides the Maritime (Sea) Polar (Cold) air mass
You sure this isn't your Geography question?

You might be interested in
Give a strong idea to protect , purify and the beautify of the Dal lake​
Sholpan [36]

Answer:

Water in dal lake is test for any heavy metals and pollutant, sewage and drainage system are also monitored for the same.

Explanation:

  • Dal lake is located in Srinagar that is the state capital of Kashmir and is known for recreation and tourism purposes. The area covers about 18 km sq. and forms a part of natural wetlands.
  • The lake is prone to pollution and has recently undergone restoration measures. To address the problems of eutrophication algae and large-scale microplankton have been removed from the water.
  • The government of India has taken various measures to check the pollution by setting up a committee to monitor the proper use of allotted funds.
3 0
3 years ago
A book on a 2-meter high shelf has a mass of 0.4 kg. What is its potential energy?
poizon [28]

Answer:

\boxed {\boxed {\sf 7.84 \ Joules}}

Explanation:

The formula for potential energy is:

PE=m*g*h

where <em>m </em>is the mass, <em>g</em> is the gravitational acceleration, and <em>h</em> is the height.

The mass of the book is 0.4 kilograms. The gravitational acceleration on Earth is 9.8 m/s². The height of the book is 2 meters.

m=0.4 \ kg \\g=9.8 \ m/s^2 \\h=2\ m

Substitute the values into the formula.

PE=(0.4 \ kg)(9.8 \ m/s^2)(2 \ m)

Multiply the first two numbers.

  • 0.4 kg*9.8 m/s²= 3.92 kg*m/s²
  • If we convert the units now, the problem will be much easier later on.
  • 1 kg*m/s² is equal to 1 Newton. So, our answer of 3.92 kg*m/s² is equal to 3.92 N

PE=(3.92 \ N )(2 \ m)

Multiply.

  • 3.92 N* 2 m=7.84 N*m
  • 1 Newton meter is equal to 1 Joule (this is why we converted the units).
  • Our answer is equal to<u> 7.84 Joules.</u>

PE=7.84  \ J

6 0
3 years ago
Read 2 more answers
A horizontal force of 750 N is needed to overcome the force of static friction between a level floor and a 250-kg crate. What is
Aleksandr [31]

Answer:

The acceleration of the crate is 1.8 m/s² so the answer is a.

Explanation:

The very first thing you must do when solving this problem is to draw a free body diagram. (The body diagram is attached to this answer)

So once we got the free body diagram, we can analyze it and build our sum of forces in the x and y directions. Notice that according to the diagram, there are 4 forces to this problem, Normal (N), Weight (W), kinetic friction (fk) and the 750N force.

As one may see in the free body diagram, two of the forces are vertical forces: N and W, so we can use them to build a sum of forces:

Starting with the sum of forces in the y-direction, we get:

ΣF_{y}=0

We set the sum equal to zero because there is no movement in the y-direction, so the system is in vertical equilibrium.

so the sum will be:

N-W=0

when solving for N we get that:

N=W

where W is found by multiplying the mass of the crate by the acceleration of gravity:

N=250kg*9.8m/s²

N=2450N

Once we found the normal force, we can use it to find the kinetic friction which is given by the following formula:

f_{k}=Nμ

where μ is the kinetic friction coefficient.

So we get that the kinetic friction is:

f_{k}=2450N*0.12

so

f_{k}=294

With this information we can go ahead and find the sum of horizontal forces:

ΣF_{x}=ma

In this case the sum is equal to mass times acceleration because the crate is moving horizontally due to the action of a force, so it will have an acceleration.

so the sum of forces look like this:

750N-f_{k}=ma

so

750N-294N=(250kg)a

when solving for a we get:

a=\frac{759N-294N}{250kg}\\ \\a=1.8m/s^{2}

so the crate's acceleration is 1.82m/s².

5 0
3 years ago
How do I solve for this?
vova2212 [387]
I can’t see anything
7 0
2 years ago
A puck of mass 0.110 kg slides across ice in the positive x-direction with a kinetic friction coefficient between the ice and pu
lara [203]

Answer:

a) Ffr = -0.18 N

b) a= -1.64 m/s2

c) t = 9.2 s

d) x = 68.7 m.

e) W= -12.4 J

f) Pavg = -1.35 W

g) Pinst = -0.72 W

Explanation:

a)

  • While the puck slides across ice, the only force acting in the horizontal direction, is the force of kinetic friction.
  • This force is the horizontal component of the contact force, and opposes to the relative movement between the puck and the ice surface, causing it to slow down until it finally comes to a complete stop.
  • So, this force can be written as follows, indicating with the (-) that opposes to the movement of the object.

       F_{frk} = -\mu_{k} * F_{n} (1)

       where μk is the kinetic friction coefficient, and Fn is the normal force.

  • Since the puck is not accelerated in the vertical direction, and there are only two forces acting on it vertically (the normal force Fn, upward, and  the weight Fg, downward), we conclude that both must be equal and opposite each other:

      F_{n} = F_{g} = m*g (2)

  • We can replace (2) in (1), and substituting μk by its value, to find the value of the kinetic friction force, as follows:

       F_{frk} = -\mu_{k} * F_{n} = -0.167*9.8m/s2*0.11kg = -0.18 N (3)

b)

  • According Newton's 2nd Law, the net force acting on the object is equal to its mass times the acceleration.
  • In this case, this net force is the friction force which we have already found in a).
  • Since mass is an scalar, the acceleration must have the same direction as the force, i.e., points to the left.
  • We can write the expression for a as follows:

        a= \frac{F_{frk}}{m} = \frac{-0.18N}{0.11kg} = -1.64 m/s2  (4)

c)

  • Applying the definition of acceleration, choosing t₀ =0, and that the puck comes to rest, so vf=0, we can write the following equation:

        a = \frac{-v_{o} }{t} (5)

  • Replacing by the values of v₀ = 15 m/s, and a = -1.64 m/s2, we can solve for t, as follows:

       t =\frac{-15m/s}{-1.64m/s2} = 9.2 s (6)

d)

  • From (1), (2), and (3) we can conclude that the friction force is constant, which it means that the acceleration is constant too.
  • So, we can use the following kinematic equation in order to find the displacement before coming to rest:

        v_{f} ^{2} - v_{o} ^{2} = 2*a*\Delta x  (7)

  • Since the puck comes to a stop, vf =0.
  • Replacing in (7) the values of v₀ = 15 m/s, and a= -1.64 m/s2, we can solve for the displacement Δx, as follows:

       \Delta x  = \frac{-v_{o}^{2}}{2*a} =\frac{-(15.0m/s)^{2}}{2*(-1.64m/s2} = 68.7 m  (8)

e)

  • The total work done by the friction force on the object , can be obtained in several ways.
  • One of them is just applying the work-energy theorem, that says that the net work done on the object is equal to the change in the kinetic energy of the same object.
  • Since the final kinetic energy is zero (the object stops), the total work done by friction (which is the only force that does work, because the weight and the normal force are perpendicular to the displacement) can be written as follows:

W_{frk} = \Delta K = K_{f} -K_{o} = 0 -\frac{1}{2}*m*v_{o}^{2} =-0.5*0.11*(15.0m/s)^{2}   = -12.4 J  (9)

f)

  • By definition, the average power is the rate of change of the energy delivered to an object (in J) with respect to time.
  • P_{Avg} = \frac{\Delta E}{\Delta t}  (10)
  • If we choose t₀=0, replacing (9) as ΔE, and (6) as Δt, and we can write the following equation:

       P_{Avg} = \frac{\Delta E}{\Delta t} = \frac{-12.4J}{9.2s} = -1.35 W (11)

g)

  • The instantaneous power can be deducted from (10) as W= F*Δx, so we can write P= F*(Δx/Δt) = F*v (dot product)
  • Since F is constant, the instantaneous power when v=4.0 m/s, can be written as follows:

       P_{inst} =- 0.18 N * 4.0m/s = -0.72 W (12)

7 0
3 years ago
Other questions:
  • What is a metric unit for energy?
    14·1 answer
  • The same force is applied to two skateboards. One rolls across the room and the other moves a few feet and comes to a stop. Wher
    10·2 answers
  • Read the sentence.
    8·2 answers
  • A rope vibrates every 0.5 s. what is the frequency of the waves?
    9·2 answers
  • Correctly round the following number to the whole number<br> 2.35784
    7·1 answer
  • Two racecars are driving at constant speeds around a circular track. both cars are the same distance away from the center of the
    12·1 answer
  • What is the half-life of an isotope that decays to 25% of its original activity in 70.8 hours?
    12·1 answer
  • NEED ANSWER REAL QUICK
    9·2 answers
  • The state highway patrol radar guns use a frequency of 9.50 GHz. If you're approaching a speed trap driving 37.9 m/s, what frequ
    11·1 answer
  • Convert 800 cm to meters.
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!