Answer:
low amplitude hope it will help you
Answer:
Answer:
Speed of the wave in the string will be 3.2 m/sec
Explanation:
We have given frequency in the string fixed at both ends is 80 Hz
Distance between adjacent antipodes is 20 cm
We know that distance between two adjacent anti nodes is equal to half of the wavelength
So \frac{\lambda }{2}=20cm
2
λ
=20cm
\lambda =40cmλ=40cm
We have to find the speed of the wave in the string
Speed is equal to v=\lambda f=0.04\times 80=3.2m/secv=λf=0.04×80=3.2m/sec
So speed of the wave in the string will be 3.2 m/sec
Answer:

Explanation:
Given that,
Mass of a crate is 22 kg
It moved up along the 15 degrees incline without tipping.
We need to find the corresponding magnitude of force P. The force P is acting in horizontal direction.
It means that the horizontal component of force is given by :

So, the horizontal component of force is 208.25 N.
Answer:
14m/s
Explanation:
Given parameters:
Radius of the curve = 50m
Centripetal acceleration = 3.92m/s²
Unknown:
Speed needed to keep the car on the curve = ?
Solution:
The centripetal acceleration is the inwardly directly acceleration needed to keep a body along a curved path.
It is given as;
a =
a is the centripetal acceleration
v is the speed
r is the radius
Now insert the parameters and find v;
v² = ar
v² = 3.92 x 50 = 196
v = √196 = 14m/s
Answer:
a)1500N
b)153.06kg
Explanation:
F = ma
g(moon) = is the acceleration due to gravity on the moon
g(earth) is the acceleration due to gravity on the earth
g(moon) = 1/6g(earth)
g(earth) =6g(moon)
F(gearth) = mg(earth)
= m 6g(moon)
= 6 × 250
= 1500N
b) F(gearth) = mg(earth)
m = F /g
= 1500/9.8
= 153.06kg