Answer:
4b: comets
5a: supercluster
5b: they just changed 4b's solar system for milky way. I think it is still comets. if not, then just say black holes.
<u>Correct Question:</u>
Calculate the distance (in km) charlie runs if he maintains an average speed of 8 km/hr for 1 hour
<u>Answer:</u>
The total distance covered by Charlie is 8 km in 1 hour.
<u>Explanation:</u>
The average velocity as given in the question is,
v = 8 km/hr
Total time taken,

As we know the formula to evaluate the total distance d when the average velocity and time is given;




Hence, the total distance covered by Charlie in 1 hour will be 8 km.
Answer:
C) 24.4°
Explanation:
let nd = 2.419 be the index of refraction of diamond and na = 1.0 be the index of refraction of air and ∅c be the critical angle.
according to Snell's Law:
sin(∅c) = na/nd
sin(∅c) = (1.0)/(2.419)
∅c = 24.4°
Answer:
the displacement of the object is 5 units
Explanation:
The computation of the displacement of the object is shown below:
= Move to the right + move to the right - move to the left
= 6 units + 3 units - 4 units
= 9 units - 4 units
= 5 units
Hence, the displacement of the object is 5 units
Answer:
421.83 m.
Explanation:
The following data were obtained from the question:
Height (h) = 396.9 m
Initial velocity (u) = 46.87 m/s
Horizontal distance (s) =...?
First, we shall determine the time taken for the ball to get to the ground.
This can be calculated by doing the following:
t = √(2h/g)
Acceleration due to gravity (g) = 9.8 m/s²
Height (h) = 396.9 m
Time (t) =.?
t = √(2h/g)
t = √(2 x 396.9 / 9.8)
t = √81
t = 9 secs.
Therefore, it took 9 secs fir the ball to get to the ground.
Finally, we shall determine the horizontal distance travelled by the ball as illustrated below:
Time (t) = 9 secs.
Initial velocity (u) = 46.87 m/s
Horizontal distance (s) =...?
s = ut
s = 46.87 x 9
s = 421.83 m
Therefore, the horizontal distance travelled by the ball is 421.83 m