Answer:
Answer:
4 ms
Explanation:
initial velocity, u = 75 m/s
final velocity, v = 0
distance, s = 15 cm = 0.15 m
Let the acceleration is a and the time taken is t.
Use third equation of motion
v² = u² + 2 a s
0 = 75 x 75 - 2 a x 0.15
a = - 18750 m/s^2
Use first equation of motion
v = u + at
0 = 75 - 18750 x t
t = 4 x 10^-3 s
t = 4 ms
thus, the time taken is 4 ms.
Explanation:
Answer:

Explanation:
The rotational kinetic energy when the cylinder is with the rope is:

where we used the fact that both rope and cylinder hast the same w. This E_k must conserve, that is, E_k must equal E_k when the rope leaves the cylinder. Hence, the final w is given by:
(1)
For Ic and Ir we can assume that the rope is a ring of the same radius of the cylinder. Then, we have:

Finally, by replacing in (1):

hope this helps!!
Answer: opening of the nicotinic acetylcholine receptor channels.
Explanation:
Neuromuscular junction is a special junction formed between a motor neurone and a muscle fibre. The junction is fortified with nerves and receptors that helps in the transmission of signals from the motor neurone to the muscle fibre in order to bring about the desired voluntary movements through muscular contraction.
Nicotinic acetylcholine receptor are activated through the binding of acetylcholine at the neuromuscular junction. This action leads to influx of sodium ions to accomplish endplate potential.
I’ve always been failing since middle school. it’s bcs of quarantine that made me unmotivated. rn my grades are F’s D C and A . I should be paying attention but my phone just keeps me distracted lol.
<h3><u>Question: </u></h3>
The equation for the speed of a satellite in a circular orbit around the Earth depends on mass. Which mass?
a. The mass of the sun
b. The mass of the satellite
c. The mass of the Earth
<h3><u>Answer:</u></h3>
The equation for the speed of a satellite orbiting in a circular path around the earth depends upon the mass of Earth.
Option c
<h3><u>
Explanation:
</u></h3>
Any particular body performing circular motion has a centripetal force in picture. In this case of a satellite revolving in a circular orbit around the earth, the necessary centripetal force is provided by the gravitational force between the satellite and earth. Hence
.
Gravitational force between Earth and Satellite: 
Centripetal force of Satellite :
Where G = Gravitational Constant
= Mass of Earth
= Mass of satellite
R= Radius of satellite’s circular orbit
V = Speed of satellite
Equating
, we get
Speed of Satellite 
Thus the speed of satellite depends only on the mass of Earth.