1. Velocity at which the packet reaches the ground: 121.2 m/s
The motion of the packet is a uniformly accelerated motion, with constant acceleration
directed downward, initial vertical position
, and initial vertical velocity
. We can use the following SUVAT equation to find the final velocity of the packet after travelling for d=750 m:

substituting, we find

2. height at which the packet has half this velocity: 562.6 m
We need to find the heigth at which the packet has a velocity of

In order to do that, we use again the same SUVAT equation substituting
with this value, so that we find the new distance d that the packet travelled from the helicopter to reach this velocity:

Which means that the heigth of the packet was

Yes. It means that the acceleration increases at a constant rate, for example 3 mph every second.
Gravity is the attraction of every body to every other body due to the masses of each body. The larger the mass, the greater the force. It also depends on the distances: the closer the bodies, the greater the force. Gravity is directed toward the center of a body, and the distance is measured from the center.
When objects fall to the ground, gravity causes them to accelerate. Acceleration is a change in velocity, and velocity, in turn, is a measure of the speed and direction of motion. Gravity causes an object to fall toward the ground at a faster and faster velocity the longer the object falls.
By copying their genomes, they retain the tool kit and at the same time generate a garage full of spare parts. Gene duplication can provide the raw material for expression changes to occur, and polyploidy itself can trigger epigenetic changes
Answer:
correct option is b. 31.3 m/s
Explanation:
given data
artificial gravity a1 = 1 g
artificial gravity a2 = 2 g
diameter = 100 m
radius r= 50 m
speed v1 = 22.1 m/s
solution
As acceleration is ∝ v²
so we can say
.....................1
put here value
solve it
v2 =
× 22.1
v2 = 31.25 m/s
so correct option is b. 31.3 m/s