Answer:
See explanation
Explanation:
The periodic table shows the atomic number and mass number of each element.
We know that the atomic number shows;
- The number of protons in the nucleus of the atom
- The number of electrons in the neutral atom of the element.
So we obtain the number of protons and electrons by looking at the atomic number shown in the periodic table.
We also know that;
Mass number = Number of protons + number of neutrons
Since number of protons = atomic number of the atom
Number of neutrons = Mass number - atomic number
Hence we obtain the number of protons by subtracting the atomic number from the mass number given in the periodic table.
I attached the working and the answer to both questions below.
Please note that E = energy, ν = frequency, h = Plank's Constant
<span>The energy of a 4.66 x 10</span>¹⁴<span> Hz wave is
3.088 </span>
× <span>
10</span>
⁻¹⁷ J
Answer: 1.9 moles
Explanation:
Step 1: Determine how many grams of a substance are in the problem.
From the question; we have 62 grams of Oxygen
Step 2: With the aid of a periodic table, the atomic mass of Oxygen is 16g, but since oxygen is diatomic i.e O2, it's molecular mass would be 32g.
Step 3: Applying the mathematical expression for finding moles
Moles = Mass/ Molar Mass
= 62g/ 32 g
= 1.9
∴ 62g of oxygen is equivalent to 1.9 moles.
Answer:
Point of incidence: The point on the surface where the incident ray strikes the surface is called the point of incidence. Reflected ray: The ray of light that bounces back from the surface of an object is called a reflected ray of light.
Explanation:
Search
Cystine is dimer of Cystein amino acid formed by oxidation reaction. Its main function is to provide mechanical strength to proteins and allow them to retain their 3-D structures and also serves as a substrate for the cystine-glutamate antiporter.
As shown in figure cystine has two amino groups (highlighted blue) and two carboxylic groups (highlighted green). In its original structure cystine is neutral in nature as it has equal number of basic (NH₂) and acidic (COOH) moieties along with two chiral centers (asymmetric carbons) highlighted with red spots.
When one -NH₂ group is replaced by -COOH group the cystine is converted into an acidic compound with three COOH groups and a NH₂ group. Also, one asymmetric carbon will convert into a symmetrical carbon with a loss of one chiral carbon.
In second step, when another NH₂ is replaced by COOH, the acidic strength of resulting compound will increase along with conversion of last chiral carbon into symmetric carbon.
Therefore, the final structure will be acidic in nature with zero chiral carbons as shown in figure attached below.