I think the logical question here is to either find the distance or the displacement. They differ in such a way that distance is a scalar quantity that does not focus on the direction. Displacement is a vector quantity that covers the distance from the starting point to end point. Because it travels only in one direction (to the east), in this condition, distance is equal to displacement.
Distance = Displacement = 3,000 m + 1,500 m = 4,500 m
Answer:
52.5°C
Explanation:
The final enthalpy is determined from energy balance where initial enthalpy and specific volume are obtained from A-12 for the given pressure and state
mh1 + W = mh2
h2 = h1 + W/m
h1 + Wα1/V1
242.9 kJ/kg + 2.35.0.11049kJ/ 0.35/60kg
=287.4 kJ/kg
From the final enthalpy and pressure the final temperature is obtained A-13 using interpolation
i.e T2 = T1 + T2 -T1/h2 -h1(h2 - h1)
= 50°C + 60 - 50/295.15 - 284.79
(287.4 - 284.79)°C
= 52.5°C
Hello
It is called lightning. Lightning in a storm occurs when there are two regions (it can be cloud-cloud or cloud-ground), one with a strong excess of positive charges and the other one with a strong excess of negative charges. The two types of charge attract each other, and then a sudden flow of charges from one region to the other occurs, which is called lightning.
micrometer is used to measure the diameter of a thin wire
Answer:
a) 35.44 mm
b) 17.67 mm
Explanation:
u = Object distance = 3.6 m
v = Image distance
f = Focal length = 35 mm
= Object height = 1.8 m
a) Lens Equation

The CCD sensor is 35.34 mm from the lens
b) Magnification


The person appears 17.67 mm tall on the sensor