1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
gavmur [86]
3 years ago
8

Consider a block of mass equal to 10kg sliding on an inclined plane of 30°, as shown in the figure below. The coefficient of kin

etic friction between the block and the plane surface is c = 0.4 (a) Determine the value of the horizontal and vertical acceleration of the block. (b) If the block starts from rest in t=0s and when it is in the X=0 and Y=5m position, calculate what its horizontal and vertical position will be at the instant t=1s. (C) How long does the LM block take to reach the base of the tilted plane?

Physics
1 answer:
Dafna1 [17]3 years ago
5 0

Answer:

(a) aₓ = 1.33 m/s² and aᵧ = -0.770 m/s²

(b) x = 0.665 m and y = 4.62 m

(c) 3.61 s

Explanation:

(a) There are two ways we can solve this.  The first way is to sum the forces in the x and y direction, then use the relation tan 30° = -aᵧ/aₓ, where aᵧ is the acceleration in the +y direction (up) and aₓ is the acceleration in the +x direction (right).

The second way is to sum the forces in the parallel and perpendicular directions to find the acceleration parallel to the incline, a.  Then, use the relations aᵧ = -a sin 30° and aₓ = a cos 30°.

Let's try the first method.  Sum of forces in the +y direction:

∑F = ma

N cos 30° + Nμ sin 30° − mg = maᵧ

N cos 30° + Nμ sin 30° − mg = -maₓ tan 30°

Sum of forces in the +x direction:

∑F = ma

N sin 30° − Nμ cos 30° = maₓ

Substituting:

N cos 30° + Nμ sin 30° − mg = -(N sin 30° − Nμ cos 30°) tan 30°

N cos 30° + Nμ sin 30° − mg = -N sin 30° tan 30° + Nμ sin 30°

N cos 30° − mg = -N sin 30° tan 30°

N (cos 30° + sin 30° tan 30°) = mg

N = mg / (cos 30° + sin 30° tan 30°)

N = (10 kg) (10 m/s²) / (cos 30° + sin 30° tan 30°)

N = 86.6 N

Now, solving for the accelerations:

N sin 30° − Nμ cos 30° = maₓ

aₓ = N (sin 30° − μ cos 30°) / m

aₓ = (86.6 N) (sin 30° − 0.4 cos 30°) / 10 kg

aₓ = 1.33 m/s²

N cos 30° + Nμ sin 30° − mg = maᵧ

aᵧ = N (cos 30° + μ sin 30°) / m − g

aᵧ = (86.6 N) (cos 30° + 0.4 sin 30°) / 10 kg − 10 m/s²

aᵧ = -0.770 m/s²

Now let's try the second method.

Sum of forces in the perpendicular direction:

∑F = ma

N − mg cos 30° = 0

N = mg cos 30°

Sum of forces in the parallel direction:

∑F = ma

mg sin 30° − Nμ = ma

mg sin 30° − mgμ cos 30° = ma

a = g (sin 30° − μ cos 30°)

a = (10 m/s²) (sin 30° − 0.4 cos 30°)

a = 1.536 m/s²

Solving for the accelerations:

aₓ = a cos 30°

aₓ = 1.33 m/s²

aᵧ = -a sin 30°

aᵧ = -0.770 m/s²

As you can see, the second method is faster and easier, but both methods will give you the same answer.

(b) In the x direction:

Given:

x₀ = 0 m

v₀ = 0 m/s

aₓ = 1.33 m/s²

t = 1 s

Find: x

x = x₀ + v₀ t + ½ at²

x = 0 m + (0 m/s) (1 s) + ½ (1.33 m/s²) (1 s)²

x = 0.665 m

In the y direction:

Given:

y₀ = 5 m

v₀ = 0 m/s

aᵧ = -0.770 m/s²

t = 1 s

Find: y

y = y₀ + v₀ t + ½ at²

y = 5 m + (0 m/s) (1 s) + ½ (-0.770 m/s²) (1 s)²

y = 4.62 m

(c) In the y direction:

Given:

y₀ = 5 m

y = 0 m

v₀ = 0 m/s

aᵧ = -0.770 m/s²

Find: t

y = y₀ + v₀ t + ½ at²

0 m = 5 m + (0 m/s) t + ½ (-0.770 m/s²) t²

t = 3.61 s

You might be interested in
What is needed to set a body in motion
kumpel [21]

Answer:

Newtons law

Explanation:

According to this law, a body at rest tends to stay at rest, and a body in motion tends to stay in motion, unless acted on by a net external force.

3 0
3 years ago
If 0.035pC of charge is transferred via the movement of Al3+ ions, how's many of these must be transferred in total? Please add
mr Goodwill [35]

Each Al^+^3 ion contains three extra protons. Hence, the extra charge on each  Al^+^3 = 3 \times 1.6 \times 10^-^1^9 C

Total charge = 0.035 pC

Total charge (Q) = 0.035 \times 10^-^1^2 C

Let the number of Al^+^3 ions be n.

According to question:

n \times 3 \times 1.6 \times 10^-^1^9 =0.035 \times 10^-^1^2

n = \frac{0.035 \times 10^-^1^2}{3 \times 1.6 \times 10^-^1^9}

n = 7.29167 \times 10^4

n = 72917

Hence, the total number of ions needed to be transferred is 72917

3 0
3 years ago
Tectonic plates are large segments of the earth's crust that move slowly. suppose one such plate has an average speed of 4.8 cm
user100 [1]
<span>one year is 365, 1 day is 24 hours, 1 hour is 60 minutes, 60 minutes is 60 seconds, thus (365 * 24 * 60 * 60) = 31,536,000 one year is equal to 31,536,000 seconds. the plate has a speed of 4.8 cm every 31,536,000 seconds. lets find out how far it goes in 40 seconds. (4.8/31,536,000)*40 = 0.00000608828 The plate moves 0.00000608828 cm every 40 seconds</span>
6 0
3 years ago
Through which one of the following mediums is the velocity of a sound wave the greatest?
tino4ka555 [31]

Answer: C. Steel

Explanation: When a sound wave travels through a solid body consisting

of an elastic material, the velocity of the wave is relatively

high. For instance, the velocity of a sound wave traveling

through steel (which is almost perfectly elastic) is about

5,060 meters per second. On the other hand, the velocity

of a sound wave traveling through an inelastic solid is

relatively low. So, for example, the velocity of a sound wave

traveling through lead (which is inelastic) is approximately

1,402 meters per second.

4 0
3 years ago
Read 2 more answers
WILL UPVOTE EVERY ANSWER! MULTIPLE CHOICE QUESTION!
Nitella [24]
B hardness

Giddy UP!!!!!
4 0
3 years ago
Other questions:
  • ANSWER ASAP!!!!
    13·1 answer
  • Which of the following is an explanation of how the natural world works, based on experimentation?
    13·2 answers
  • What must happen for liquid water to become water vapor?
    8·2 answers
  • During a circus act, one performer swings upside down hanging from a trapeze holding another, also upside-down, performer by the
    8·1 answer
  • Solve the current and voltage problems for the ci
    6·2 answers
  • A fluid moves through a tube of length 1 meter and radius r=0.002±0.0002 meters under a pressure p=4⋅105±1750 pascals, at a rate
    15·1 answer
  • The human heart is a powerful and extremely reliable pump. Each day it takes in and discharges about 7500 L of blood. Assume tha
    9·1 answer
  • -
    14·1 answer
  • Which is an example of a mixture?
    14·1 answer
  • Can someone do this for me pleeeaassee its due today and idek where to start
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!