I believe the balanced chemical equation is:
C6H12O6 (aq) + 6O2(g)
------> 6CO2(g) + 6H2O(l)
First calculate the
moles of CO2 produced:
moles CO2 = 25.5 g
C6H12O6 * (1 mol C6H12O6 / 180.15 g) * (6 mol CO2 / 1 mol C6H12O6)
moles CO2 = 0.8493 mol
Using PV = nRT from
the ideal gas law:
<span>V = nRT / P</span>
V = 0.8493 mol *
0.08205746 L atm / mol K * (37 + 273.15 K) / 0.970 atm
<span>V = 22.28 L</span>
Answer: 5.47m/s
Explanation:
Mass = 72.3kg
K.E = 1080.0J
V =?
K.E = 1 /2MV^2
V^2 = 2K.E /M = (2x1080)/72.3
V = sqrt [(2x1080)/72.3]
V = 5.47m/s
Answer:
Explanation:
48.16%
Well, both abundances have to total 100% so is Ag-107 is 51.84%, then Ag-109 must be 100 – 51.84 = 48.16%.
Hope This Helps :)
= k
<u>Explanation:</u>
The relation between volume, V of gas and Temperature, T of a gas is related by Charles Law.
This law states that the volume of a given amount of gas held at a constant pressure is directly proportional to the Kelvin temperature
Thus,
= k
where k is a constant
Therefore,
=
=
...
This shows, as the volume of a gas goes up, the temperature also goes up and vice-versa.
Answer:
Doping with galium or indium will yield a p-type semiconductor while doping with arsenic, antimony or phosphorus will yield an n-type semiconductor.
Explanation:
Doping refers to improving the conductivity of a semiconductor by addition of impurities. A trivalent impurity leads to p-type semiconductor while a pentavalent impurity leads to an n-type semiconductor.