Answer:
With an Environmental Engineering and a broadcasting minor
You can work as an On Air personality that host programs that provide your audience with documentaries about the environments and project carried out by Environmental Engineer
and also you can work as a journalist that explore the world making research that will preserve the environment and leveraging the media as a broadcaster to provide this research findings as a video for you audience
Explanation:
In order to get a better understanding let define some terms
Environmental Engineer
:
Environmental engineers resolve and help prevent environmental problems. They work in many areas, including air pollution control, industrial hygiene, toxic materials control, and land management. The duties of an environmental engineer range from planning and designing an effective waste treatment plant to studying the effects of acid rain on a particular area. An environmental engineer is sometimes required to work outdoors, though most of her work is done in a laboratory or office setting. Career opportunities for environmental engineers exist in consulting, research, corporate, and government positions.
Broadcasting:
Broadcasting is the distribution of audio or video content to a dispersed audience via any electronic mass communications medium, but typically one using the electromagnetic spectrum (radio waves), in a one-to-many model.
Answer:
a) 
For this case we know the following values:




So then if we replace we got:

b) 
With 
And replacing we have:

And then the scattered wavelength is given by:

And the energy of the scattered photon is given by:

c) 
Explanation
Part a
For this case we can use the Compton shift equation given by:
For this case we know the following values:
So then if we replace we got:
Part b
For this cas we can calculate the wavelength of the phton with this formula:
With
And replacing we have:
And then the scattered wavelength is given by:
And the energy of the scattered photon is given by:
Part c
For this case we know that all the neergy lost by the photon neds to go into the recoiling electron so then we have this:
A wave is a result of the disturbance in the equilibrium state. There are two types of wave, transverse and longitudinal. Transverse wave affects amplitude while longitudinal wave affects the frequency of the wave. As for the transverse wave, the magnitude of the perpendicular disturbance of the wave is directly proportional to the amplitude of the wave. The higher the transverse disturbance the higher the amplitude.
Answer:
(A) 60 J
Explanation:
At state 1
KE₁=100 J
At state 2
KE₂ = 0
U₂=80 J
Given that surface is rough so friction force will act in opposite to the direction of motion
Lets take work done by friction = Wfr
From work power energy
Work done by all forces = Change in kinetic energy
Wfr + U₂=ΔKE
Wfr+80 = 100
Wfr= 20 J
Now when book slides from top position then
Wfr+ U = KEf - KEi
-20 + 80 = KEf-0
KEf= 60 J
(A) 60 J
Answer: The work done in J is 324
Explanation:
To calculate the amount of work done for an isothermal process is given by the equation:

W = amount of work done = ?
P = pressure = 732 torr = 0.96 atm (760torr =1atm)
= initial volume = 5.68 L
= final volume = 2.35 L
Putting values in above equation, we get:

To convert this into joules, we use the conversion factor:

So, 
The positive sign indicates the work is done on the system
Hence, the work done for the given process is 324 J