Hello!
Explanation:
↓↓↓↓↓↓↓
Density is the amount of mass in a given volume. It's a derived unit of measure. It is equal to mass divided by volume. It's measured in units such as grams per cubic centimeter and grams per milliliter. Density is the ratio of mass to volume. Density is a physical property of an object. It is degree of compactness of a substances. Relative density is used to separate solids, liquids, and gases. The gas in the container rises to the top because it has the least density. The liquids separate into individual layers based on their relative densities. The least dense liquid is on top. The most dense liquid is on bottom. The solids sink to the bottom of the container because they have the greatest density.
Hope this helps!
Thank you for posting your question at here on Brainly.
-Charlie
Answer:
Formula weight of H₂O molecule is 18.02 amu.
Explanation:
Given data:
Formula weight of H₂O = ?
Atomic mass of H = 1.008 amu
Atomic mass of O = 16.00 amu
Solution:
Formula weight:
"It is the sum of all the atomic weight of atoms present in given formula"
Formula weight of H₂O = 2×1.008 amu + 1×16.00 amu
Formula weight of H₂O = 18.02 amu
Thus, formula weight of H₂O molecule is 18.02 amu.
The options for given question are as follow,
1) Methane molecules show hydrogen bonding.
<span>2) Ammonia molecules show hydrogen bonding. </span>
<span>3) Methane has stronger hydrogen bonding than ammonia. </span>
<span>4) Both the compounds do not show hydrogen bonding. </span>
<span>5) Both the compounds have strong hydrogen bonding.
</span>
Answer:
Correct answer is Option-2 (Ammonia molecules show hydrogen bonding).
Explanation:
Hydrogen bond interactions are formed when a partial positive hydrogen atom attached to most electronegative atom of one molecule interacts with the partial negative most electronegative element of another molecule. So, in Ammonia hydrogen gets partial positive charge as nitrogen is highly electronegative. While the C-H bond in Methane is non-polar and fails to form hydrogen bond interactions.
You can't really describe it but this is what it looks like http://www.chemspider.com/Chemical-Structure.453291.html
Answer: The Lattice energy is the energy required to separate an ionic solid into its component gaseous ions <em>or</em>
It is the energy released when gaseous ions combine to form an ionic solid.
Explanation:
The lattice energy depends on the ionization energies and electron affinities of atoms involved in the formation of the compound. The ionization energies and electron affinities also depends on the ionic radius and charges of the ions involved. As the ionic radius for cations <em>increases</em> down the groups, ionization energy <em>decreases</em>, whereas, as ionic radii <em>decreases</em> across the periods , ionization energy <em>increases</em>. The trend observed for anions is that as ionic radii <em>increase </em>down the groups, electron affinity <em>decreases. </em>Across the period, as ionic radii <em>increases</em> electron affinity <em>increases</em>. Also, as the charge on the ion <em>increases,</em> it leads to an <em>increase</em> in energy requirement/content.
Therefore, for compounds formed from cations and anions in the same period, the highest charged cation and anion will have the highest lattice energy. For example, among the following compounds: Al2O3 (aluminium oxide), AlCl3 (aluminium chloride), MgO, MgCl2 (magnesium chloride), NaCl, Na2O (sodium oxide); Al2O3(aluminium oxide) will have the highest lattice energy, thus will be hardest to break apart because its ions have the highest charge.