Answer:
Clavulanic acid has two (2) chiral centers.
Explanation:
A chiral center is a center (usually carbon) with four different substituents.
The structure of clavulanic acid is shown in the attachment below.
Consider the labeled diagram in the attachment,
Carbon A is not a chiral carbon because it has two hydrogen atoms attached to it
Carbon B is not a chiral carbon because it has only three substituents
Carbon C is a chiral carbon because it has four different substituents
Carbon D is a chiral carbon because it has four different substituents
Carbon E is not a chiral carbon because it has only three atoms directly attached to it
Carbon F is not a chiral carbon because it has only three atoms directly attached to it
Carbon G is not a chiral carbon because it has two hydrogen atoms attached to it
Carbon H is not a chiral carbon because it has only three substituents
Then, only carbons C and D are chiral carbons.
Hence, clavulanic acid have two (2) chiral centers.
I think it’s A, the particles of gas inside the ballon move faster and decrease pressure in
<span>0.0750 M Na3PO4 as this solution would contain 3 Na+ and 1 PO4- ions per mole of Na3PO4 for an effective total ion concentration of 4 x .0750 or .300 M. The K2SO4 has three total ions or a concentration of .300 M as well. Hope it helps. </span>
Answer:
The gas that Dr. Brightguy added was O₂
Explanation:
Ideal Gases Law to solve this:
P . V = n . R . T
Firstly, let's convert 736 Torr in atm
736 Torr is atmospheric pressure = 1 atm
20°C = 273 + 20 = 293 T°K
125 mL = 0.125L
0.125 L . 1 atm = n . 0.082 L.atm / mol.K . 293K
(0.125L .1atm) / (0.082 mol.K /L.atm . 293K) = n
5.20x10⁻³ mol = n
mass / mol = molar mass
0.1727 g / 5.20x10⁻³ mol = 33.2 g/m
This molar mass corresponds nearly to O₂