Answer:
salt bridge balances the charge when electrons move from one half cell to another half cell.
Explanation:
Explanation: A salt bridge balances the charge when electrons move from one half cell to another half cell. During this process the salt bridge uses its electrolyte solution which further helps in balancing charges in both the half cells. ... Therefore, for each electrochemical cell a new salt bridge is used.
The attraction of an
ion leads to the formation of an ionic bond with 
<h3>What is an ionic bond?</h3>
Ionic bond, also called an electrovalent bond, type of linkage formed from the electrostatic attraction between oppositely charged ions in a chemical compound.
Since the question asking among all these options:
(a) The attraction of a noble gas
(b) The attraction of a
ion
(c) The attraction of a group 1 element
(d) The attraction of a
ion
An ionic bond can be formed after two or more atoms lose or gain electrons to form an ion. Ionic bonds occur between metals, losing electrons, and nonmetals, gaining electrons.
Hence, option D is correct.
Learn more about the ionic bond here:
brainly.com/question/11527546
#SPJ1
The answer to this question is 45
Solid, ductile (can conduct heat), malleable (can be shaped differently).
Answer:
84.11 g/mol
Explanation:
A metal from group 2A will form the cation M²⁺, and the ion carbonate is CO₃²⁻, so the metal carbonate must be: MCO₃, and the reaction:
MCO₃(s) → MO(s) + CO₂(g)
For the stoichiometry of the reaction, 1 mol of MCO₃(s) will produce 1 mol of CO₂. Using the ideal gas law, it's possible to calculate the number of moles of CO₂:
PV = nRT , where P is the pressure, V is the volume(0.285 L), R is the gas constant (62.36 mmHg*L/mol*K), n is the number of moles, and T is the temperature (25 + 273 = 298 K).
69.8*0.285 = n*62.36*298
18583.28n = 19.893
n = 0.00107 mol
So, the number of moles of the metal carbonate is 0.00107. The molar mass is the mass divided by the number of moles:
0.0900/0.00107 = 84.11 g/mol