Boron’s chemistry is not typical of its group. is group 3A (13) shows the increasing metallic character from Al to Tl.
All Boron compounds are covalent whereas the other elements in group 3A (13) form mostly ionic compounds.
Except for Boron, the other elements of group 3A (13) show increasing metallic character from Al to Tl. But Boron is a metalloid.
Compared to the other elements in group 3A, boron has a lower reactivity in chemical terms (13)
The metalloid boron (B), as well as the metals aluminium (Al), gallium (Ga), indium (In), and thallium, are all part of group 3A (or IIIA) of the periodic table (Tl). In contrast to the other members of Group 3A, the element borax primarily forms covalent connections.
To learn more about group 3A (13) refer the link:
brainly.com/question/5489194
#SPJ4
Answer:
3,964 years.
Explanation:
- It is known that the decay of a radioactive isotope isotope obeys first order kinetics.
- Half-life time is the time needed for the reactants to be in its half concentration.
- If reactant has initial concentration [A₀], after half-life time its concentration will be ([A₀]/2).
- Also, it is clear that in first order decay the half-life time is independent of the initial concentration.
- The half-life of the element is 5,730 years.
- For, first order reactions:
<em>k = ln(2)/(t1/2) = 0.693/(t1/2).</em>
Where, k is the rate constant of the reaction.
t1/2 is the half-life of the reaction.
∴ k =0.693/(t1/2) = 0.693/(5,730 years) = 1.21 x 10⁻⁴ year⁻¹.
- Also, we have the integral law of first order reaction:
<em>kt = ln([A₀]/[A]),</em>
where, k is the rate constant of the reaction (k = 1.21 x 10⁻⁴ year⁻¹).
t is the time of the reaction (t = ??? year).
[A₀] is the initial concentration of the sample ([A₀] = 100%).
[A] is the remaining concentration of the sample ([A] = 61.9%).
∴ t = (1/k) ln([A₀]/[A]) = (1/1.21 x 10⁻⁴ year⁻¹) ln(100%/61.9%) = 3,964 years.
Answer:
1. Watt stream engine
2. McCormick reaper
3. Fulton steamboat
These are the correct answers.
Have A good day!! :)