To solve this problem it is necessary to apply the concepts of Work. Work is understood as the force applied to travel a determined distance, in this case the height. The force in turn can be expressed by Newton's second law as the ratio between mass and gravity, as well

Where,
m = mass
h = height
g = Gravitational constant
When it ascends to the second floor it has traveled the energy necessary to climb a height, under this logic, until the 4 floor has traveled 3 times the height h of each of the floors therefore

Replacing in our equation we have to

The correct answer is 4.
The specific heat of the substance will be 0.129 J/g°C.
<h3>What is specific heat capacity?</h3>
The amount of heat required to increase a substance's temperature by one degree Celsius is known as specific heat capacity.
Similarly, heat capacity is the relationship between the amount of energy delivered to a substance and the increase in temperature that results.
The given data in the problem is;
Q is the amount of energy necessary to raise the temperature = 3,000.0 j
M is the mass= 0.465 kg.
Δt is the time it takes to raise the temperature.=50°c
s stands for specific heat capacity=?
Mathematically specific heat capacity is given by;

Hence the specific heat of the substance will be 0.129 J/g°C.
To learn more about the specific heat capacity refer to the link brainly.com/question/2530523
Answer:
Increase in wavelength of incident wave also increases the spread angle or spread of the interference pattern.
Explanation:
Solution:-
- The diffraction occurs when light bends in the same medium. The bending is the result of light waves "squeezing" through small openings or "curving" around sharp edges.
- Moreover, waves diffract best when the size of the diffraction opening (or grting or groove) corresponds to the size of the wavelength. Hence, light diffracts more through small openings than through larger openings.
- The formula for diffraction shows a direct relationship between the angle of diffraction (theta) and wavelength:
d sin (θ) = m λ
Where,
λ : Wavelength , θ : The spread angle , d : Slit opening or grating
- We can see that the wavelength λ and spread angle θ are related proportionally. So if we increase the wavelength of incident wave we also increase the spread angle or spread of the interference pattern.
<h2>Answer: Francium
</h2>
Let's start by explaining that electronegativity is a term coined by Linus Pauling and is determined by the <em>ability of an atom of a certain element to attract electrons when chemically combined with another atom.
</em>
So, the more electronegative an element is, the more electrons it will attract.
It should be noted that this value can not be measured directly by experiments, but it can be determined indirectly by means of calculations from other atomic or molecular properties of the element. That is why the scale created by Pauling is an arbitrary scale, where the maximum value of electronegativity is 4, assigned to Fluorine (F) and the <u>lowest is 0.7, assigned to Francium (Fr).</u>