Answer:
polar
Explanation:
because carbon and sulfur have different electronegativities, the S=C bond is polar.
The entire molecule is nonpolar however because the dipoles (polar bonds) cancel out due to the geometry of the molecule (linear)
Answer : The concentration of
at equilibrium is 0 M.
Solution : Given,
Concentration of
= 0.0200 M
Concentration of
= 1.00 M
The given equilibrium reaction is,
![Fe^{3+}(aq)+3C_2O_4^{2-}(aq)\rightleftharpoons [Fe(C_2O_4)_3]^{3-}(aq)](https://tex.z-dn.net/?f=Fe%5E%7B3%2B%7D%28aq%29%2B3C_2O_4%5E%7B2-%7D%28aq%29%5Crightleftharpoons%20%5BFe%28C_2O_4%29_3%5D%5E%7B3-%7D%28aq%29)
Initially conc. 0.02 1.00 0
At eqm. (0.02-x) (1.00-3x) x
The expression of
will be,
![K_c=\frac{[[Fe(C_2O_4)_3]^{3-}]}{[C_2O_4^{2-}]^3[Fe^{3+}]}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5B%5BFe%28C_2O_4%29_3%5D%5E%7B3-%7D%5D%7D%7B%5BC_2O_4%5E%7B2-%7D%5D%5E3%5BFe%5E%7B3%2B%7D%5D%7D)

By solving the term, we get:

Concentration of
at equilibrium = 0.02 - x = 0.02 - 0.02 = 0 M
Therefore, the concentration of
at equilibrium is 0 M.
Answer:
Mescarinic and Nicotinic
Explanation:
Postganglionic fibers can be present in both sympathetic and parasympathetic divisions, their main difference resides in how in the sympathetic division the postganglionic fibers are adrenergic and use norepinephrine (noradrenalin) as a neurotransmitter, in the parasympathetic division, on the other hand, fibers are cholinergic and use acetylcholine as a neurotransmitter, the<em> postganglionic neurons of sweat glands release acetylcholine for the activation of muscarinic receptors, another kind of receptor for acetylcholine are nicotinic receptors </em>that act as transmembrane sodium/potassium channels, while muscarinic receptors need to act through intracellular proteins.
I hope you find this informatiou useful and interesting! Good luck!
The given reaction:
<span>ch3ch2cooh (aq) ↔ ch3ch2coo- (aq) + h+ (aq)
is called a reversible reaction.
This means that, the reaction does not reach an end point.
In this type of reactions, reactants react together to form products, while products combine together to form reactants.
So, the reaction proceeds in both direction forming both reactants and products.</span>