<h3><u>Answer;</u></h3>
Frequency
<h3><u>Explanation;</u></h3>
- <em><u>Waves are disturbances that travel through a material medium. There are several characteristics of waves, which includes; wavelength, frequency, period and amplitude. </u></em>
- Amplitude is the maximum displacement of wave particles, or simply the height of the wave, measured in meters.
- Wavelength is the distance between adjacent crests or troughs in a transverse wave or between two successive rarefaction or compressions in a longitudinal wave, measured in meters.
- Period is the time it takes for one complete wave to pass a given point, measured in seconds.
- <em><u>Frequency is the number of complete waves or cycles that pass a point in one second, measured is inverse seconds, or Hertz (Hz).</u></em>
That's wave 'diffraction'.
Answer:
v = 8.09 m/s
Explanation:
For this exercise we use that the work done by the friction force plus the potential energy equals the change in the body's energy.
Let's calculate the energy
starting point. Higher
Em₀ = U = m gh
final point. To go down the slope
Em_f = K = ½ m v²
The work of the friction force is
W = fr L cos 180
to find the friction force let's use Newton's second law
Axis y
N - W_y = 0
N = W_y
X axis
Wₓ - fr = ma
let's use trigonometry
sin θ = y / L
sin θ = 11/110 = 0.1
θ = sin⁻¹ 0.1
θ = 5.74º
sin 5.74 = Wₓ / W
cos 5.74 = W_y / W
Wₓ = W sin 5.74
W_y = W cos 5.74
the formula for the friction force is
fr = μ N
fr = μ W cos θ
Work is friction force is
W_fr = - μ W L cos θ
Let's use the relationship of work with energy
W + ΔU = ΔK
-μ mg L cos 5.74 + (mgh - 0) = 0 - ½ m v²
v² = - 2 μ g L cos 5.74 +2 (gh)
v² = 2gh - 2 μ gL cos 5.74
let's calculate
v² = 2 9.8 11 - 2 0.07 9.8 110 cos 5.74
v² = 215.6 -150.16
v = √65.44
v = 8.09 m/s
Wavelength = (speed) / (frequency) = (460 m/s) / (230/sec) = <em>2 meters</em>