The acceleration of the car is 1.067 m/
.
<u>Explanation:</u>
Acceleration is the measure of change in velocity experienced by any object for a given time period. So it is determined as the ratio of difference in the velocity to the time period.
As here the initial velocity is stated as zero, so u = 0. And the final velocity is termed as 50 km/h. Then we have to determine the acceleration in 13 s. So here we have to convert the units as common units. Thus, 50 km/h should be converted to m/s as 
So now, the initial velocity u = 0 and final velocity v = 13.88 m/s and the time period is given as t = 13 s.

So the acceleration of the car is 1.067 m/
.
Answer:
A) 29.4 m 17.0 m; B) 2 m
Explanation:
If a vector is 34.0 m in length and is directed 60.0° east of north (which means 30.0° over the horizontal), then its coordinates will be:
Horizontal: (34.0 m)cos(30.0°)=29.4 m
Vertical: (34.0 m)sin(30.0°)=17 m
If one person walks 8.0 meters in a straight line and then walks 5.0 meters in another straight line, then the minimum displacement would be to go back over his tracks, displacing himself 8m-5m=3m, while the maximum displacement would be going straight ahead, displacing himself 8m+5m=13m. Any answer outside this interval is impossible (2m).
Answer:
-0.8 m/s²
Explanation:
Acceleration is the slope of a velocity vs. time graph.
a = Δv / Δt
a = (0 m/s − 12 m/s) / (15 s − 0 s)
a = -0.8 m/s²
Answer:
elastic potential energy
You input potential (stored) energy into the rubber band system when you stretched the rubber band back. Because it is an elastic system, this kind of potential energy is specifically called elastic potential energy.
Explanation:
1 newton-meter is 1 Joule, the unit of work and energy.